【题目】为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为
,第二种检测不合格的概率为
,两种检测是否合格相互独立.
(1)求每台新型防雾霾产品不能销售的概率;
(2)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利
元).现有该新型防雾霾产品3台,随机变量
表示这3台产品的获利,求
的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】给定下列四个命题
若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
若一条直线和两个互相垂直的平面中的一个平面垂直,那么这条直线一定平行于另一个平面;
若一条直线和两个平行平面中的一个平面垂直,那么这条直线也和一个平面垂直;
若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,
其中,真命题的个数是
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
).以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为![]()
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)已知曲线
与曲线
交于
,
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:(1)一定存在直线
,使函数
的图像与函数
的图像关于直线
对称;(2)不等式:
的解集为
;(3)已知数列
的前
项和为
,
,则数列
一定是等比数列;(4)过抛物线
上的任意一点
的切线方程一定可以表示为
.则正确命题的序号为_________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆”现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的
倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某销售公司在当地
、
两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了
、
两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记
表示这两家超市每日共销售食品件数,
表示销售公司每日共需购进食品的件数.
(1)求
的分布列;
(2)以销售食品利润的期望为决策依据,在
与
之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程是
(
是参数).以原点
为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程是
.
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)设
为曲线
上的动点,过
点且与
垂直的直线交
于点
,求
的最小值,并求此时点
的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com