【题目】如图所示,已知
是正三角形,若
平面
,平面
平面
,且
.
![]()
(1)求证:
平面
;
(2)若
平面
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,
平面PCD,
,
,
,E为AD的中点,AC与BE相交于点O.
![]()
(1)证明:
平面ABCD.
(2)求直线BC与平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为
,这两个相距为
的惰性气体原子组成体系的能量中有静电相互作用能
,其中
为静电常量,
,
分别表示两个原子负电中心相对各自原子核的位移,且
和
都远小于
,当
远小于1时,
,则
的近似值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药开发公司实验室有
瓶溶液,其中
瓶中有细菌
,现需要把含有细菌
的溶液检验出来,有如下两种方案:
方案一:逐瓶检验,则需检验
次;
方案二:混合检验,将
瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌
,则
瓶溶液全部不含有细菌
;若检验结果含有细菌
,就要对这
瓶溶液再逐瓶检验,此时检验次数总共为
.
(1)假设
,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌
的概率;
(2)现对
瓶溶液进行检验,已知每瓶溶液含有细菌
的概率均为
.
若采用方案一.需检验的总次数为
,若采用方案二.需检验的总次数为
.
(i)若
与
的期望相等.试求
关于
的函数解析式
;
(ii)若
,且采用方案二总次数的期望小于采用方案一总次数的期望.求
的最大值.
参考数据:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1为椭圆
的左焦点,
在椭圆上,PF1⊥x轴.
(1)求椭圆的方程:
(2)已知直线l与椭圆交于A,B两点,且坐标原点O到直线l的距离为
的大小是否为定值?若是,求出该定值:若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为2的等边△ABC中,D,E分别为边AC,AB的中点.将△ADE沿DE折起,使得AB⊥AD,得到如图2的四棱锥A﹣BCDE,连结BD,CE,且BD与CE交于点H.
![]()
(1)证明:
;
(2)设点B到平面AED的距离为h1,点E到平面ABD的距离为h2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为
、
、
、
、
、
、
、
共8个等级。参照正态分布原则,确定各等级人数所占比例分别为
、
、
、
、
、
、
、
.等级考试科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.
举例说明.
某同学化学学科原始分为65分,该学科
等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属
等级.而
等级的转换分区间为61~70,那么该同学化学学科的转换分为:
设该同学化学科的转换等级分为
,
,求得
.
四舍五入后该同学化学学科赋分成绩为67.
(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
.
(i)若小明同学在这次考试中物理原始分为84分,等级为
,其所在原始分分布区间为82~93,求小明转换后的物理成绩;
(ii)求物理原始分在区间
的人数;
(2)按高考改革方案,若从全省考生中随机抽取4人,记
表示这4人中等级成绩在区间
的人数,求
的分布列和数学期望.
(附:若随机变量
,则
,
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若实数
满足
,则称
为函数
的不动点.
(1)求函数
的不动点;
(2)设函数
,其中
为实数.
① 若
时,存在一个实数
,使得
既是
的不动点,又是
的不动点(
是函数
的导函数),求实数
的取值范围;
② 令
,若存在实数
,使
,
,
,
成各项都为正数的等比数列,求证:函数
存在不动点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com