精英家教网 > 高中数学 > 题目详情
已知一工厂生产某原料的生产成本y(万元)为产量x(千吨)之间的关系为y=x+
400
x+1
,则生产成本最少时该工厂的产量x为(  )
A、17千吨B、18千吨
C、19千吨D、20千吨
考点:基本不等式在最值问题中的应用
专题:应用题,不等式的解法及应用
分析:利用题意得出y=x+
400
x+1
=(x+1)+
400
x+1
-1,x≥0,转化为,y=t+
400
t
-1,t≥1,利用基本不等式求解.
解答: 解:根据题意可得:y=x+
400
x+1
,求解其最小值即可.
∴y=x+
400
x+1
=(x+1)+
400
x+1
-1,x≥0,
设x+1=t,t≥1,y=t+
400
t
-1,t≥1,
∵t+
400
t
≥2
400
=40,(t仅当=20等号成立),
∴当x=19时,生产成本最少为40-1=39,
故选:C
点评:本题考查了函数在实际问题中的应用,结合基本不等式求解,数中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z是方程z2+2z+2=0的解,若Imz>0,且
a
z
-
.
z
=b+bi(a,b∈R+),则
1
a
+
1
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
p
=(1+
3
cos2x,1),
q
=(-1,sin2x+n)(x∈R,n∈N*),且f(x)=
p
q

(Ⅰ)在锐角△ABC中,a,b,c分别是角A,B,C的对边,且c=3,△ABC的面积为3
3
,当n=1时,f(A)=
3
,求a的值.
(Ⅱ)若x∈[0,
π
2
]
时,f(x)的最大值为an(an为数列{an}的通项公式),设数列{bn}满足:b1=
1
2
,且n≥2时bn=
1
an-1an
,记数列{bn}的前n项和Tn,若对?n∈N*,Tn≤k(n+4),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个三角形,采用斜二测画法作出其直观图,则其直观图的面是原三角形面积的(  )
A、
1
2
B、2倍
C、
2
4
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

从天空降落到地面上的雨水,未经蒸发、渗透、流失而在平面上积聚的水层深度,我们称为降水量(以毫米为单位),它可以直观地表示降雨的多少,目前,测定降雨量常用的仪器包括雨量筒和量杯,雨量筒是内径为20厘米的圆柱形容器,量杯是内径为4厘米的圆柱形容器,为了测量某次降雨量的大小,在雨前将雨量筒置于室外承接雨水,雨后将水倒入量杯中,测得杯中的垂直高度 为10厘米,则这次降雨量为
 
毫米.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3x2+ax+a
(1)若f(x)在区间(1,2)上单调,求实数a的取值范围;
(2)求证:函数f(x)图象的对称中心是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:DM∥平面PCB;
(2)求直线AD与平面PBD所成角的正弦值;
(3)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD=A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:AD1∥平面EFG;
(2)求证:平面AB1D1∥平面EFG;
(3)求异面直线B1D1与EG所成的角度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某社区老年活动站的主要活动项目有3组及相应人数分别为:A组为棋类有21人、B组为音乐舞蹈类有14人、C组为美术类有7人,现采取分层抽样的方法从这些人中抽取6人进行问卷调查.
(Ⅰ)求应从A组棋类、B组音乐舞蹈类、C组美术类中分别抽取的人数;
(Ⅱ)若从抽取的6人中随机抽取2人做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2人均为参加棋类的概率.

查看答案和解析>>

同步练习册答案