精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD=A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:AD1∥平面EFG;
(2)求证:平面AB1D1∥平面EFG;
(3)求异面直线B1D1与EG所成的角度数.
考点:异面直线及其所成的角,直线与平面平行的判定,平面与平面平行的判定
专题:空间位置关系与距离
分析:(1)首先,连结C1B,然后,得到四边形ABC1D1是平行四边形,从而得证;
(2)根据(1)可以证明AB1∥平面EFG,从而证明;
(3)根据平行关系,得到∠FEG就是异面直线B1D1与EG所成的角,然后放到三角形中求解.
解答: 解:(1)连结C1B,
∵AB∥B1C1,且AB=B1C1
∴四边形ABC1D1是平行四边形,
∴AD1∥BC1
又∵E、G为中点,
∴BC1∥EG,
∴AD1∥EG,
∴AD1∥平面EFG;
(2)结合(1),同理可以证明
AB1∥平面EFG,
∵AB1∩AD1=A,
∴平面AB1D1∥平面EFG;
(3)∵BD∥B1D1,且BD∥EF,
∴∠FEG就是异面直线B1D1与EG所成的角,
在△EFG中,显然为等边三角形,
∴异面直线B1D1与EG所成的角为60°.
点评:本题重点考查了空间中平行关系、异面直线所成的角等知识,考查比较综合,解题关键是学会转化思想在立体几何中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:BC⊥平面PAC;
(2)求二面角A-PC-D的平面角α的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一工厂生产某原料的生产成本y(万元)为产量x(千吨)之间的关系为y=x+
400
x+1
,则生产成本最少时该工厂的产量x为(  )
A、17千吨B、18千吨
C、19千吨D、20千吨

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+
f′(0)
x+1
-2f(0)•x.
(1)求f(x)的解析式;
(2)若不等式ex+x2-ax>f(x)在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=3x+3.
(1)求点P(5,3)关于直线l的对称点P′的坐标;
(2)求直线l1:x-y-2=0关于直线l的对称直线l2的方程;
(3)已知点M(2,6),试在直线l上求一点N使得|NP|+|NM|的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一级数学必修一模块考试的成绩分为四个等级,85分-100分为A等,70分-84分为B等,55分-69分为C等,54分以下为D等.右边的茎叶图(十位为茎,个位为叶)记录了某班某小组6名学生的数学必修一模块考试成绩.
(1)求出茎叶图中这6个数据的中位数和平均数;
(2)若从这6名学生中随机抽出2名,分别求恰好有一名学生的成绩达到A等的概率和至多有一名学生的成绩达到A等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心C(-1,2),且圆C经过原点.
(1)求圆C的方程;
(2)过原点作圆C的切线m,求切线m的方程;
(3)过点A(-2,0)的直线n被圆C截得的弦长为2,求直线n的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(3x+φ)(A>0,x∈R,0<φ<π)在x=
π
12
时取得最大值4.
(1)求f(x)的解析式;
(2)若f(
2
3
α+
π
12
)=
12
5
,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是奇函数,当x≥0为减函数,f(1+a)<-f(a),则a的取值范围是
 

查看答案和解析>>

同步练习册答案