精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.
分析:(1)当a=-6时,由f′(x)=0得x=2,可判断出当x∈(0,1)时,f(x)单调递减;当x∈(1,3]时,f(x)单调递增,从而得到f(x)在[0,3]上的最值.
(2)要使f(x)在定义域内既有极大值又有极小值,即f(x)在定义域内与X轴有三个不同的交点,即使f′(x)=0在(-1,+∞)有两个不等实根,即2x2+3x+1+a=0在(-1,+∞)有两个不等实根,可以利用一元二次函数根的分布,即可求a的范围.
(3)先构造函数h(x)=x3-x2+ln(x+1),然后研究h(x)在[0,+∞)上的单调性,求出函数h(x)的最小值,从而得到ln(x+1)>x2-x3,最后令x=
1
n
,即可证得结论.
解答:解:(1)由题意知,f(x)的定义域为(-1,+∞),
a=-6时,由f'(x)=2x+1-
6
x+1
=
(x-1)(2x+5)
x+1
=0,得x=1(x=-
5
2
舍去),
当x∈(0,1)时,f′(x)<0,当x∈(1,3]时,f′(x)>0,
所以当x∈(0,2)时,f(x)单调递减;当x∈(1,3]时,f(x)单调递增,
所以f(x)min=f(1)=2-6ln2,f(x)max=f(3)=12-12ln2,
(2)由题意f'(x)=2x+1+
a
x+1
=
2x2+3x+1+a
x+1
=0在(-1,+∞)有两个不等实根,
即2x2+3x+1+a=0在(-1,+∞)有两个不等实根,
设g(x)=2x2+3x+1+a,则
△=9-8(1+a)>0
g(-1)>0
,解之得0<a<
1
8

(3)对于函数f(x)=x2-ln(x+1),令函数h(x)=x3-f(x)=x3-x2+ln(x+1)
则h/(x)=3x2-2x+
1
x+1
=
3x3+(x-1)2
x+1

∴当x∈[0,+∞)时,h′(x)>0
所以函数h(x)在[0,+∞)上单调递增,
又h(0)=0,
∴x∈(0,+∞)时,恒有h(x)>h(0)=0
即x2<x3+ln(x+1)恒成立.
取x=
1
n
∈(0,+∞),则有ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.
即不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立
点评:本题以函数为载体,考查函数的最值,考查函数的单调性.第一问判断f(x)在定义域的单调性即可求出最小值.第二问将f(x)在定义域内既有极大值又有极小值问题转化为f(x)在定义域内与X轴有三个不同的交点是解题的关键,第三问的关键是构造新函数,利用导数证明不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案