分析 (1)由已知可得BOEF为平行四边形,可得OE∥BF,通过证明平面BCF∥平面OGE,即可得证CF∥平面OGE.
(2)连接OF,由(1)可知ODEF为正方形,可得DF⊥OE,进而证明AC⊥平面BDEF,可得DF⊥AC,即可证明DF⊥平面ACE.
解答 证明:(1)∵EF∥BD,BD=2EF=2,O为正方形ABCD的中心,
∴EF∥OB,EF=OB,即BOEF为平行四边形,
∴OE∥BF,
又∵OE?平面OGE,BF?平面OGE,
∴BF∥平面OGE,![]()
∵BC∥AD∥GE,
∴BC∥平面OGE,
∵BC∩BF=B,
∴平面BCF∥平面OGE,
∴CF∥平面OGE.
(2)连接OF,由(1)可知ODEF为正方形,
∴DF⊥OE,
又∵四边形ABCD为正方形,
∴BD⊥AC.
又∵平面ABCD⊥平面BDEF,且平面ABCD∩平面BDEF=BD,
∴AC⊥平面BDEF,
∴DF⊥AC
又OE∩AC=O,
∴DF⊥平面ACE.
点评 本题考查直线与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{9}{4}$ | B. | $\frac{4\sqrt{2}}{9}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | (-∞,-1] | C. | [1,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | (0,3] | C. | (1,3) | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com