分析 (1)利用三角形面积计算公式即可得出.
(2)利用余弦定理与足下登录即可得出.
解答 解:(1)在三角形ABC中,$\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{2}accosB$,
∴$tanB=\sqrt{3}$,
∵B为三角形内角,
∴0<B<π,∴$B=\frac{π}{3}$.
(2)∵a2+c2=4ac,又∵a2+c2=b2+2accosB,∴b2+2accosB=4ac,
∵$B=\frac{π}{3}$,
∴b2=3ac.
由正弦定理可得sin2B=3sinA sinC,
∵$B=\frac{π}{3}$,
∴$sinAsinC=\frac{1}{4}$.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}+\frac{{\sqrt{3}}}{4}$ | B. | $\frac{1}{2}-\frac{{\sqrt{3}}}{4}$ | C. | $\frac{3}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com