精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+ ,现有一组数据,绘制得到茎叶图,且茎叶图中的数据的平均数为2.(茎叶图中的数据均为小数,其中茎为整数部分,叶为小数部分)
(Ⅰ)求a的值;
(Ⅱ)现从茎叶图小于3的数据中任取2个数据分别替换m的值,求恰有1个数据使得函数f(x)没有零点的概率.

【答案】解:(Ⅰ)根据茎叶图中的数据,计算平均数为 = ×(0.3+0.1×a+0.5+1.4+1.9+1.8+2.3+3.2+3.4+4.5)=2,
解得a=7;
(Ⅱ)茎叶图小于3的数据有0.3,0.7,0.5,1.4,1.9,1.8,2.3共7个;
从中任取2个数据,有 =21种不同的取法;
函数f(x)=x2+ 中,
△=2(m﹣1)2﹣m=2m2﹣5m+2,
令△<0,解得 <m<2,
∴满足该条件的数据是0.7,1.4,1.8,1.9共4个;
用抽出的2个数分别替换m的值,恰有1个数据使得函数f(x)没有零点的不同取法是 =12,
故所求的概率为P= =
【解析】(Ⅰ)根据茎叶图中的数据,利用平均数的定义列方程求出a的值;(Ⅱ)写出茎叶图小于3的数据,从中任取2个数据的不同取法; 利用判别式△<0求出函数f(x)没有零点时m的取值范围,求出对应的事件数,
计算所求的概率值.
【考点精析】解答此题的关键在于理解茎叶图的相关知识,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆一个焦点为,离心率

Ⅰ)求椭圆的方程式.

Ⅱ)定点为椭圆上的动点,求的最大值;并求出取最大值时点的坐标求.

Ⅲ)定直线为椭圆上的动点,证明点的距离与到定直线的距离的比值为常数,并求出此常数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=mxα的图象经过点A(2,2).

(1)试比较2ln f(3)与3ln f(2)的大小;

(2)定义在R上的函数g(x)满足g(-x)=g(x), g(4+x)=g(4-x),且当x∈[0,4]时,

. 若关于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151个整数解,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是椭圆 在第一象限上的动点,过点P引圆x2+y2=4的两条切线PA、PB,切点分别是A、B,直线AB与x轴、y轴分别交于点M、N,则△OMN面积的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

【答案】(1)对称轴为,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.

(1)

,则

的对称轴为,最小正周期

(2)当时,

因为单调递增,在单调递减,

取最大值,在取最小值,

所以

所以

【点睛】

本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.

型】解答
束】
21

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: =1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1 , 四边形ABCD的面积为S2 . (Ⅰ)当点B坐标为(﹣1,0)时,求k的值;
(Ⅱ)若S1= ,求线段AD的长;
(Ⅲ)求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,ABBCBABCBD是边AC上的高,沿BDABC折起,当三棱锥ABCD的体积最大时,该三棱锥外接球表面积为(  )

A. 12πB. 24πC. 36πD. 48π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+kx+2y+k20,过点P1,﹣1)可作圆的两条切线,则实数k的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P—ABC中,△PBC为等边三角形,点O为BC的中点,AC⊥PB,平面PBC⊥平面ABC.

(1)求直线PB和平面ABC所成的角的大小;

(2)求证:平面PAC⊥平面PBC;

(3)已知E为PO的中点,F是AB上的点,AF=AB.若EF∥平面PAC,求的值.

查看答案和解析>>

同步练习册答案