精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ln(x+1)
x+1

(1)求函数f(x)的最大值;
(2)设函数g(x)=
x
(x+1)
x+1
,证明:当x>0时,函数f(x)的图象总在函数g(x)图象的下方.
分析:(1)求出函数的定义域,求出函数的导函数,由导函数的零点对定义域分段,判出函数的极值点,从而得到最大值点,代入原函数求最大值;
(2)要证当x>0时,函数f(x)的图象总在函数g(x)图象的下方把两函数作差后得到恒小于0的不等式,换元后构造辅助函数,求导后证明函数的最大值小于0,则问题得到证明.
解答:(1)解:因为函数f(x)=
ln(x+1)
x+1
的定义域为(-1,+∞).
f(x)=
1-ln(x+1)
(x+1)2
,由f′(x)=0得x=e-1.
所以当x∈(-1,e-1)时,f′(x)>0.
当x∈(e-1,+∞)时,f′(x)<0.
所以当x=e-1时f(x)由最大值,最大值为f(e-1)=
1
e

(2)证明:f(x)-g(x)<0等价于
ln(x+1)
x+1
-
x
(x+1)
x+1
<0.
不妨设
x+1
=t 则x=t2-1(t>1).
于是不等式等价于2tlnt<t2-1.
设F(t)=2tlnt-t2+1
则F'(t)=2+lnt-2t
当t>1时,F'(x)<0,F(x)单调递减.
所以F(t)<f(1)=0.
也就等价于f(x)<g(x)恒成立(当x=1时等号成立).
点评:本题考查了利用导数求函数在闭区间上的最值,考查了数学转化思想方法,训练了构造函数法,此类问题在考题中常以压轴题的形式出现,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案