精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{1}{1+x}$,又知f(g(x))=$\frac{1}{{x}^{2}+3}$,则g(x)=x2+2.

分析 利用代入法,即可求出g(x).

解答 解:∵函数f(x)=$\frac{1}{1+x}$,又知f(g(x))=$\frac{1}{{x}^{2}+3}$,
∴$\frac{1}{1+g(x)}$=$\frac{1}{{x}^{2}+3}$,
∴g(x)=x2+2.
故答案为:x2+2.

点评 本题考查函数的解析式,考查代入法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知f(x)=ax2+b,其中a,b,x均为实数,且A={x|f(x)=x},B={x|f(f(x))=x}.
 (1)求证:A⊆B;
(2)当A≠B,并且A,B均不为空集时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式|5x+4|<6的解集为(  )
A.{x|x>-2}B.{x|-2<x<$\frac{2}{5}$}C.{x|x<$\frac{2}{5}$}D.{x|x<-2或x>$\frac{2}{5}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=x(ex-1)-$\frac{1}{2}$x2,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(3)=0,则$\frac{f(x)+2f(-x)}{x}$>0的解集为(  )
A.(-3,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(0,3)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x}\\;x≥0}\\{ax+b\\;x<0}\end{array}\right.$,在点x=0处可导,求常数a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系中,O为坐标原点,A(0,4)、B(-4,0),点C是x轴正半轴上的点,△ABC的面积是14,O到AC的距离是$\frac{12}{5}$,动点P从A出发以每秒3个单位长度的速度沿射线AC运动,同时动点Q从C点出发以每秒2个单位的速度沿x轴的正方向运动.
(1)求点C的坐标;
(2)P在运动的过程中,当BP⊥AC时,设BP与AO交于H,求AH的长;
(3)t取何值时△CPQ是以PQ为底边的等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x为钝角,sinx=$\frac{3}{5}$,tan(x-y)=$\frac{1}{3}$,求tany.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ax在x∈[-1,1]上恒有f(x)<2,则实数a的取值范围为$(\frac{1}{2},1)∪(1,2)$.

查看答案和解析>>

同步练习册答案