精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在R上是增函数且f(m2)>f(-m),则实数m的取值范围是
(-∞,-1)∪(0,+∞)
(-∞,-1)∪(0,+∞)
分析:根据增函数的性质:函数值大,自变量也越大,去掉符号“f”,即可求m的取值范围.
解答:解:∵y=f(x)在R上单调递增,且f(m2)>f(-m),
∴m2>-m,即m2+m>0.
解得m<-1或m>0,
所以实数m的取值范围是:(-∞,-1)∪(0,+∞).
故答案为:(-∞,-1)∪(0,+∞).
点评:若函数y=f(x)单调递增,则f(x1)<f(x2)?x1<x2,把抽象函数问题转化为函数不等式或方程求解,但无论如何都必须在定义域给定的范围内进行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案