精英家教网 > 高中数学 > 题目详情
设函数f(x)在x=x0处可导,则等于( )

A.      B.     C.2f¢(x0)       D.-2f¢(x0)

 

答案:C
提示:

根据导数的定义

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,F(x)=
f(x) (x>0)
-f(x) (x<0)
,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3+
1
2
bx2+cx(a,b,c∈R,a≠0)
的图象在点(x,f(x))处的切线的斜率为k(x),且函数g(x)=k(x)-
1
2
x
为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式k(x)≤
1
2
x2+
1
2
恒成立.
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)求证:
1
k(1)
+
1
k(2)
+…+
1
k(n)
2n
n+2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:潍坊一模 题型:解答题

设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案