精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
ax3+ax2+4
,g(x)=2(x+2)2,h(x)=f(x)+g(x).
(Ⅰ)当a=1时,求f(x)与g(x)的公共单调区间;
(Ⅱ)若函数h(x)有极值,求实数a的何值范围;
(Ⅲ)当a<0时,讨论函数h(x)的零点个数.
(Ⅰ)当a=1时,f'(x)=x2+2x=x(x+2)…(1分)
由f'(x)>0得x<-2或x>0,由f'(x)<0得-2<x<0,
∴f(x)的单调递增区间是(-∞,-2),(0,+∞),递减区间是(-2,0),…(3分)
又g(x)的对称轴为x=-2且开口向上,
∴g(x)的单调递增区间是(-2,+∞),递减区间是(-∞,-2),…(4分)
∴a=1时,f(x)与g(x)的公共单调递增区间是(0,+∞),无公共递减区间…(5分)
(Ⅱ)h(x)=f(x)+g(x)=
1
3
ax3+(a+2)x2+8x+12

∴h'(x)=ax2+2(a+2)x+8=(ax+4)(x+2)…(6分)
①当a=0时,h'(x)=2x2+8x+12=2(x+2)2+4在(-2,+∞)递增,
在(-∞,-2)递减,则h(x)有极小值,符合题设…(7分)
②当a≠0时,令h'(x)=0得,x1=-2,x2=-
4
a

若函数h(x)有极值,h'(x)=0两个相异实根,∴-2≠-
4
a
,得 a≠2
综上(1)(2)得,若函数h(x)有极值,实数a的何值范围是:{a/a≠2,a∈R}…(9分)
(Ⅲ)∵a<0,由h'(x)=(ax+4)(x+2)=0得x=-2或x=-
4
a

-
4
a
>-2
将x,h'(x),h(x)的变化情况列表如下:
x (-∞,-2) -2 (-2,-
4
a
-
4
a
-
4
a
,+∞)
h'(x) - 0 + 0 -
h ( x ) 极小值 极大值
h(x)极小值=h(-2)=
4
3
a+4
,h(x)极大值>h(0)=12>0…(11分)
(另设
1
a
=t,h(x)极大值=h(-4t)=
32
3
(t-
3
4
)2+6>0
,亦可)
4
3
a+4>0
即-3<a<0时,在x充分大时,h(x)<0,∴h(x)零点个数为1;
4
3
a+4=0
即a=-3时,h(x)零点个数为2;
4
3
a+4<0
即a<-3时,h(x)零点个数为3;               …(13分)
综上所述,当-3<a<0时,h(x)零点个数为1;当a=-3时,h(x)零点个数为2;
当a<-3时,h(x)零点个数为3.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案