精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,⊥平面,底面为梯形,,点在棱上,且

(1)当时,求证:∥面
(2)若直线与平面所成角为,求实数的值.
(1)证明过程见试题解析;(2)实数的值为.

试题分析:(Ⅰ)连接BD交AC于点M,连结ME, 先证明,再证明∥面
先以A为坐标原点,分别以AB,AP为y轴,Z轴建立空间直角坐标系, 求出各点的坐标,再求出平面的一个法向量为, 而已知直线与平面所成角为,进而可求实数的值.
试题解析:(Ⅰ)证明:连接BD交AC于点M,连结ME,


,当,

.

∥面.                             4分
(Ⅱ)由已知可以A为坐标原点,分别以AB,AP为y轴,Z轴建立空间直角坐标系,设DC=2,则,
,可得E点的坐标为               6分
所以.
设平面的一个法向量为,则,设,则,,所以                                8分
若直线与平面所成角为,
,                            9分
解得                               10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=2,AA1,点DAC的中点,点E在线段AA1上.

(1)当AEEA1=1∶2时,求证DEBC1
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是边长为3的正方形,与平面所成的角为.

(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在直三棱柱ABCA1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2aBB1=3aDA1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中,ABAA1=2,AD=1,ECC1的中点,则异面直线BC1AE所成角的余弦值为 (  ).                  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列的前n项和为,且,则过点的直线的一个方向向量的坐标可以是(    )
A.B.(2,4)C.D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.

(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面是正方形,侧棱底面,,的中点.
(1)证明平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量,,则(     )
A.B.C.5D.25

查看答案和解析>>

同步练习册答案