精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,ABAA1=2,AD=1,ECC1的中点,则异面直线BC1AE所成角的余弦值为 (  ).                  
A.B.C.D.
B
建立坐标系如图所示.

A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2),=(-1,0,2),=(-1,2,1).
cos〈〉=.
所以异面直线BC1AE所成角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=2AD=2,OCD的中点,沿AO将△AOD折起,使DB.

(1)求证:平面AOD⊥平面ABCO
(2)求直线BC与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,DBC的中点.

(1)求证:A1B∥平面ADC1
(2)若ABBB1=2,求A1D与平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥平面,底面为梯形,,点在棱上,且

(1)当时,求证:∥面
(2)若直线与平面所成角为,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为的菱形,,底面, ,的中点,的中点.

(Ⅰ)证明:直线平面
(Ⅱ)求异面直线所成角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为

(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,ABBC=1,动点PQ分别在线段C1DAC上,则线段PQ长度的最小值是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,是棱的中点,在棱上.
,若二面角的余弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若向量a=(1,1),b=(-1,1),c=(4,2),则c=()
A.3a+bB.3a-bC.-a+3bD.a+3b

查看答案和解析>>

同步练习册答案