精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是边长为的菱形,,底面, ,的中点,的中点.

(Ⅰ)证明:直线平面
(Ⅱ)求异面直线所成角的大小;
(Ⅰ)详见解析;(Ⅱ)异面直线所成角为

试题分析:(Ⅰ)证明:直线平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,本题虽有中点,但没直接的三角形,可考虑用平行四边形的对边平行,可取OD的中点G,连结CG,MG,证明四边形为平行四边形即可,也可取中点,连接,利用面面平行则线面平行,证平面平面即可.也可利用向量法,作于点P,如图,分别以,所在直线为轴建立坐标系,利用向量与平面的法向量垂直,即数量积等于零;(Ⅱ)求异面直线所成角的大小,分别写出异面直线对应向量的坐标,由向量的夹角公式即可求出.
试题解析:方法一(综合法)
(Ⅰ)取中点,连接   
        
(Ⅱ)
为异面直线所成的角(或其补角),
连接 , ,,,
,  
所以 所成角的大小为 
方法二(向量法)
于点P,如图,分别以,所在直线为轴建立坐标系.
,
,

(Ⅰ)
设平面的法向量为,则 
, 取,解得
..
(Ⅱ)设所成的角为, 
,   , 即所成角的大小为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是边长为的正方形,平面与平面所成角为.

(1)求证:平面
(2)求二面角的余弦值;
(3)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是边长为3的正方形,与平面所成的角为.

(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱的所有棱长都为4,D为的中点.

(1)求证:⊥平面
(2)求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平行六面体ABCD-A1B1C1D1中,
AB
=
a
AD
=
b
AA1
=
c
,E,F为BD1,B1C1的中点,则
EF
a
b
c
可表示为(  )
A.
1
2
a
-
b
+
1
2
c
B.
1
2
a
+
1
2
c
C.-
1
2
a
+
1
2
c
D.
1
2
a
-
1
2
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中,ABAA1=2,AD=1,ECC1的中点,则异面直线BC1AE所成角的余弦值为 (  ).                  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若P是平面外一点,A为平面内一点,为平面的一个法向量,则点P到平面的距离是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体中,

(1)求直线所成角;
(2)求直线所成角的正弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,已知ABCD为正方形,.
(1)求证:平面平面
(2)求点A到平面BEF的距离;

查看答案和解析>>

同步练习册答案