精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),焦距为2
3

(Ⅰ)求椭圆Γ的方程;
(Ⅱ)设斜率为k的直线l过点C(-1,0)且交椭圆Γ于A,B两点,试探究椭圆Γ上是否存在点P,使得四边形OAPB为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),焦距为2
3
,求出a,c,可求b,即可求椭圆Γ的方程;
(Ⅱ)直线y=k(x+1)代入椭圆方程,利用韦达定理,结合椭圆Γ上存在点P(x0,y0)使得四边形OAPB为平行四边形,求出P的坐标,代入椭圆方程,即可得出结论.
解答: 解:(Ⅰ)由已知得a=2,c=
3
,…(2分)
因为a2=b2+c2,所以b2=a2-c2=1,…(3分)
所以椭圆Γ的方程为  
x2
4
+y2=1
;…(4分)
(Ⅱ)依题意得:直线y=k(x+1),设A(x1,y1),B(x2,y2),
假设椭圆Γ上存在点P(x0,y0)使得四边形OAPB为平行四边形,则
x1+x2=x0
y1+y2=y0

y=k(x+1)
x2
4
+y2=1
得(1+4k2)x2+8k2x+4(k2-1)=0,…(6分)
所以x1+x2=
-8k2
1+4k2
y1+y2=k(x1+x2+2)=k(
-8k2
1+4k2
+2)=
2k
1+4k2
.…(8分)
于是
x0=
-8k2
1+4k2
y0=
2k
1+4k2
即点P的坐标为(
-8k2
1+4k2
2k
1+4k2
)
.    …(10分)
又点P在椭圆上,所以
(
-8k2
1+4k2
)
2
4
+(
2k
1+4k2
)2=1
,整理得4k2+1=0,此方程无解.…(11分)
故椭圆Γ上不存在点P,使四边形OAPB为平行四边形.  …(12分)
点评:本小题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin(ωx)(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2
3
),赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P两点间的距离;
(2)设∠PMN=θ,试用θ表示赛道MNP的长;            
(3)当θ为何值时,折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],
则把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=x2,x∈[0,+∞)符合条件②的区间[a,b];
(2)是否存在函数f(x)=kx+b(k≠0)在R内为闭函数,且[1,2]为满足条件②的区间?若存在,求出f(x),若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过x轴上动点A(a,0),引抛物线y=x2+1的两条切线AP、AQ.切线斜率分别为k1和k2,切点分别为P、Q.
(1)求证:k1•k2为定值;并且直线PQ过定点;
(2)记S为面积,当
S△APQ
|
PQ
|
最小时,求
AP
AQ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD是一个观光区的平面示意图,建立平面直角坐标系,使顶点A在坐标原点O,B,D分别在x轴,y轴上,AD=3百米,AB=a百米(3≤a≤4)观光区中间叶形阴影部分MN是一个人工湖,它的左下方边缘曲线是函数y=
2
x
(1≤x≤2)的图象的一段.为了便于游客观光,拟在观光区铺设一条穿越该观光区的直路(宽度不计),要求其与人工湖左下方边缘曲线段M,)N相切(切点记为P),并把该观光区分为两部分,且直线/左下部分建设为花圃.设点j′到的AD距离为t,f(t)表示花圃的面积.
(1)求花圃面积f(t)的表达式;
(2)求f(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
sin
x
4
,1),
b
=(cos
x
4
,cos2
x
4
),f(x)=
a
b

(1)若f(x)=1,求sin(
x
2
+
π
6
)的值;
(2)在△ABC中,若∠B=
π
3
,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(1-3x)>0,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次数字测验中,记座位号为n(n=1,2,3,4)的同学的考试成绩为f(n).若f(n)∈{70,85,88,90,98,100},且满足f(1)<f(2)≤f(3)<f(4),则这4位同学考试成绩的所有可能有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是:下面哪一个是符合条件的
 

(1)r∈(0,1]
(2)r∈(1,2]
(3)r∈(
3
2
,4)
(4)r∈[
3
2
,+∞)

查看答案和解析>>

同步练习册答案