精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的偶函数,且x≥0时,.
(1)求f(-1)的值;
(2)求函数f(x)的值域A;
(3)设函数的定义域为集合B,若AÍB,求实数a的取值范围.
(1) (2)(3)

试题分析:(1)由函数为偶函数可得。(2)函数是定义在 上的偶函数,可得函数的值域A即为时,的取值范围.根据指数函数的单调性可求得范围。(3)法一:可先求出集合,根据画图分析可得实数的取值范围。法二:因为,所以均使有意义。
试题解析:(1)函数是定义在上的偶函数,∴          1分
又 x≥0时,                    2分
                                           3分
(2)由函数是定义在 上的偶函数,可得函数的值域A即为时,的取值范围  5分
时,                                7分
故函数的值域                              8分
(3)
定义域                          9分
(方法一)由
                                   12分
因为,∴,且                     13分
实数的取值范围是                            14分
(方法二)设
当且仅当                                      12分
                                           13分
实数的取值范围是。                                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义在上的函数是偶函数,且时,
(1)当时,求解析式;
(2)当,求取值的集合;
(3)当,函数的值域为,求满足的条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=.
(1)求函数f(x)的定义域;
(2)设α是第四象限的角,且tan α=-,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y的定义域是 (   ).
A.[-,-1)∪(1,]B.(-,-1)∪(1,)
C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数定义域为,则满足不等式的实数m的集合____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域是(   )
A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域是____________.

查看答案和解析>>

同步练习册答案