精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A、B、C所对的边分别为a,b,c,且满足 2acosC=2b-c.
(1)求sinA的值;
(2)若a=1,求△ABC的周长l的取值范围.

分析 (1)由题意和正弦定理以及和差角的三角函数公式可得cosA=$\frac{1}{2}$,进而可得sinA=$\frac{\sqrt{3}}{2}$;
(2)由(1)可得a=1,sinA=$\frac{\sqrt{3}}{2}$,A=$\frac{π}{3}$,结合正弦定理可得l=1+$\frac{2}{\sqrt{3}}$sinB+$\frac{2}{\sqrt{3}}$sinC=1+2sin(B+$\frac{π}{6}$),由B∈(0,$\frac{2π}{3}$)和三角函数的值域可得.

解答 解:(1)由题意可得2acosC=2b-c,
结合正弦定理可得 2sinAcosC=2sinB-sinC,
∴2sinAcosC=2sin(A+C)-sinC,
∴2sinAcosC=2sinAcosC+2cosAsinC-sinC,
∴2cosAsinC=sinC,即cosA=$\frac{1}{2}$,
∴sinA=$\frac{\sqrt{3}}{2}$;
(2)由(1)可得a=1,sinA=$\frac{\sqrt{3}}{2}$,A=$\frac{π}{3}$,
∴b=$\frac{asinB}{sinA}$=$\frac{2}{\sqrt{3}}$sinB,同理可得c=$\frac{2}{\sqrt{3}}$sinC,
∴△ABC的周长l=1+$\frac{2}{\sqrt{3}}$sinB+$\frac{2}{\sqrt{3}}$sinC
=1+$\frac{2}{\sqrt{3}}$sinB+$\frac{2}{\sqrt{3}}$sin($\frac{2π}{3}$-B)
=1+$\frac{2}{\sqrt{3}}$(sinB+$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB)
=1+$\frac{2}{\sqrt{3}}$($\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB)
=1+2sin(B+$\frac{π}{6}$),
∴B∈(0,$\frac{2π}{3}$),∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴2sin(B+$\frac{π}{6}$)∈(1,2],
∴1+2sin(B+$\frac{π}{6}$)∈(2,3],
∴△ABC的周长l的取值范围为(2,3].

点评 本题考查解三角形,涉及正余弦定理和和差角的三角函数,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数中,为偶函数的是(  )
A.y=x+1B.y=$\frac{1}{x}$C.y=x4D.y=x5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-3x2-f′(0)x+c(c∈R),其中 f′(0)为函数f(x)在x=0处的导数.
(Ⅰ)求函数f(x)的递减区间;
(Ⅱ)若函数f(x)的图象关于($\frac{1}{2}$,0)对称,求实数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,ABCD-A′B′C′D′是棱长为1的正方体,点P是BC′上的动点,$\overrightarrow{BP}=λ\overrightarrow{BC'}$,则$\overrightarrow{AP}•\overrightarrow{DC}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{1}{3}$|sin2πx|,ai=$\frac{i}{19}$(i=0,1,2,…,19),I=|f(a1)-f(a0)|+|f(a2)-f(a1)|+…+|f(a19)-f(a18)|,则(  )
A.I>1B.I<1C.I=1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知2m=5n=10,则$\frac{1}{m}+\frac{1}{n}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线x=$\frac{1}{2}$,x=2,y=0,及曲线y=$\frac{1}{x}$所围图形的面积为(  )
A.$\frac{15}{4}$B.$\frac{17}{4}$C.$\frac{1}{2}ln2$D.2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)<0,试求不等式  f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x),x∈[1,+∞)的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,直线l:y=x+m,且直线l与椭圆交于A、B两不同点.
(1)求m的取值范围;
(2)若m=2,求弦AB长.

查看答案和解析>>

同步练习册答案