精英家教网 > 高中数学 > 题目详情
12.不等式x(1-2x)>0的解集为(  )
A.$(0,\frac{1}{2})$B.$(-∞,0)∪(\frac{1}{2},+∞)$C.RD.

分析 把不等式化为x(2x-1)<0,求出解集即可.

解答 解:不等式x(1-2x)>0可化为:
x(2x-1)<0,
解得0<x<$\frac{1}{2}$,
∴不等式的解集为(0,$\frac{1}{2}$).
故选:A.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合U={1,2,3,4,5},集合A={1,2,3},则∁UA=(  )
A.{1,2,3}B.{4,5}C.{1,2,3,4,5}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=x+2cosx,x∈(0,π)的单调减区间是($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an},若an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”,已知数列{bn}为“凸数列”,且b1=2,b2=-1,其前n项和为sn,则s2017=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1
(2)证明$\left\{{\frac{a_n}{2^n}+1}\right\}$为等比数列,并求数列{an}的通项;
(3)设bn=log3(an+2n),且Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+{\frac{1}{{{b_3}b}}_4}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,证明Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线x+$\sqrt{3}$y-1=0的倾斜角为(  )
A.60°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.样本容量为200的频率分布直方图如图所示,根据样本的频率分布直方图估计,总体数据落在[2,10)内的概率约为(  )
A.0.2B.0.4C.0.8D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.甲、乙、丙、丁四名同学站成一排,甲站在两端的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.把118化为六进制数为314(6)

查看答案和解析>>

同步练习册答案