精英家教网 > 高中数学 > 题目详情
设a∈R,f(x)为奇函数,f(2x)=
a•4x+a-24x+1

(1)写出函数f(x)的定义域;
(2)求a,并写出f(x)的表达式;
(3)用函数单调性定义证明:函数f(x)在定义域上是增函数.(可能用到的知识:若x1<x2,则0<2x12x2,0<4x14x2
分析:(1)先用换元法由f(2x)求得f(x),再求f(x)的定义域.
(2)由f(x)为奇函数,得到f(-x)=-f(x)成立,用待定系数法求解.
(3)要求用定义证明,首先任意在定义域上任取两个变量,且界定其大小,再作差变形看符号,若自变量与函数值变化一致,则为增函数;若自变量与函数值变化相反,则为减函数.
解答:解:(1)由题意f(2x)=
a22x+a-2
22x+1
f(x)=
a2x+a-2
2x+1
(2分)
故函数f(x)的定义域为R(4分)
(2)∵f(x)为奇函数∴f(-x)=-f(x)对任意的x∈R都成立∴f(0)=0(7分)
即a+a-2=0∴a=1(10分)
所以f(x)=
2x-1
2x+1
=1-
2
2x+1
(11分)
(3)对任意的x1,x2∈R且x1<x2(14分)f(x1)-f(x2)=1-
2
2x1+1
-(1-
2
2x2+1
)

=
2
2x2+1
-
2
2x1+1

=
2(2x1-2x2)
(2x1+1)(2x2+1)
<0(16分)
即f(x1)<f(x2
函数f(x)在R上单调递增(17分)
点评:本题考查了换元法求函数解板式,求函数的定义域,奇偶性和单调性的应用,是函数性质考查中常见类型,要求熟练准确.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=-x2+2ax+1-a.
(1)若f(x)在[0,1]上的最大值是2,求实数a的值;
(2)设M={a∈R:f(x)在区间[-2,3]上的最小值为-1},试求M;
(3)是否存在实数a使f(x)在[-4,2]上的值域为[-12.,13]?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设a∈R,f(x)=cosx(asinx-cosx)+sin2x的定义域是[
π
4
11
24
π],f(
π
4
)=
3
.给出下列几个命题:
①f(x)在x=
π
4
处取得小值;
[
5
12
π,
11
24
π]
是f(x)的一个单调递减区间;
③f(x)的最大值为2;
④使得f(x)取得最大值的点仅有一个x=
π
3

其中正确命题的序号是
②③④
②③④
.(将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,f(x)=cosx(asinx-cosx)+cos2
π
2
-x)满足f(-
π
3
)=f(0)
,当x∈[
π
4
11π
24
]
时,则f(x)的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设a∈R,f(x)=cosx(asinx-cosx)+sin2x的定义域是数学公式.给出下列几个命题:
①f(x)在数学公式处取得小值;
数学公式是f(x)的一个单调递减区间;
③f(x)的最大值为2;
④使得f(x)取得最大值的点仅有一个数学公式
其中正确命题的序号是________.(将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省四校高三第一次联考数学试卷(理科)(解析版) 题型:填空题

设a∈R,f(x)=cosx(asinx-cosx)+sin2x的定义域是.给出下列几个命题:
①f(x)在处取得小值;
是f(x)的一个单调递减区间;
③f(x)的最大值为2;
④使得f(x)取得最大值的点仅有一个
其中正确命题的序号是    .(将你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案