精英家教网 > 高中数学 > 题目详情
设各项为正的数列{an}满足:,令b1=a1
(Ⅰ)求an
(Ⅱ)求证:
【答案】分析:(Ⅰ)令,则或t=-1(舍去)即,然后利用迭乘法可求出an的值.
(II)根据题目条件可知,然后利用该等下进行化简=,然后利用放缩法可证得结论.
解答:解:(Ⅰ)令,则或t=-1(舍去)即

将以上各式相乘得:an=n.…(4分)
(Ⅱ)∵


;…(6分)
当n=1时,,结论成立;…(7分)
当n≥2时,
==
=…(9分)

==.…(12分)
点评:本题主要考查了等差数列的通项公式,以及利用放缩法证明不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围.
(2)在(1)的结论下,设g(x)=e2x+bex,x∈[0,ln2],求函数g(x)的最小值;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*,求证:an≤2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+1(x>0)
(1)若对任意的x∈[1,+∞),f(x)≤0恒成立,求实数a的最小值.
(2)若a=
5
2
且关于x的方程f(x)=-
1
2
x2
+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*.求证:an≤2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+ax
(a∈R)
(Ⅰ)求f(x)的极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围;
(Ⅲ)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*,求证:an2n-1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围.
(2)在(1)的结论下,设g(x)=e2x+bex,x∈[0,ln2],求函数g(x)的最小值;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*,求证:an≤2n-1.

查看答案和解析>>

科目:高中数学 来源:2013年福建省泉州市永春一中高三5月质检数学试卷(理科)(解析版) 题型:解答题

已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围.
(2)在(1)的结论下,设g(x)=e2x+bex,x∈[0,ln2],求函数g(x)的最小值;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*,求证:an≤2n-1.

查看答案和解析>>

同步练习册答案