精英家教网 > 高中数学 > 题目详情
(2012•日照一模)若(
x
+2
3x
)11
的二项展开式中有n个有理项,则
1
0
xndx=(  )
分析:由题意可得,展开式的通项Tr+1=
C
r
11
(
x
)11-r(2
3x
)r
=2r
C
r
11
x
11-r
2
+
1
3
r
,由题意可得,
33-r
6
为整数,可求r.代入利用积分可求
解答:解:由题意可得,展开式的通项Tr+1=
C
r
11
(
x
)11-r(2
3x
)r
=2r
C
r
11
x
11-r
2
+
1
3
r

由题意可得,
33-r
6
为整数时,展开式是有理项
∴r=3,9
∴n=2
∴则
1
0
xndx=
1
0
x2dx
=
1
3
x3
|
1
0
=
1
3

故选A
点评:本题考查二项式定理,积分的求解,关键是由二项式定理,得到其展开式中有理项的项数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•日照一模)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:BD⊥EG;
(2)求平面DEG与平面DEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=sin(2x-
π
3
)
的一个单调增区间是[-
π
12
12
]

④对于任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.
其中真命题的序号是
①③④
①③④
(把所有真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知定义在R上奇函数f(x)满足①对任意x,都有f(x+3)=f(x)成立;②当x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,则f(x)=
1
|x|
在[-4,4]上根的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)图象中相邻的两条对称轴间的距离不小于π.
(I)求ω的取值范围;
(II)在△ABC中,a,b,c分别为角A,B,C的对边,a=
7
,S△ABC=
3
2
,当ω取最大值时,f(A)=1,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=2
2
sinxcosx
[-
π
4
π
4
]
上是单调递减函数;
④若lga+lgb=lg(a+b),则a+b的最小值为4.
其中真命题的序号是
①④
①④
(把所有真命题的序号都填上).

查看答案和解析>>

同步练习册答案