精英家教网 > 高中数学 > 题目详情
8.已知直线l1:(k+1)x+y+1=0和l2:(k-3)x-ky-1=0,若l1与l2有公共点,则k的取值范围为(  )
A.k≠1且k≠-3B.k≠-3C.k=1D.k=1且k=-3

分析 由-k(k+1)-(k-3)≠0,解得k即可得出.

解答 解:由-k(k+1)-(k-3)≠0,解得k≠-3,1.
故选:A.

点评 本题考查了直线相交与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设i为虚数单位,则复数$z=\frac{-1-2i}{i}$的虚部为(  )
A.-2B.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=1,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合I={1,2,3,4,5},选择I的两个非空子集A与B,要使B中最小数大于A中最大的数,则不同选择方法有(  )
A.50种B.49种C.48种D.40种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,ABCD为平行四边形,∠ABC=60°,AD=3,PA=AB=2,∠PAD=120°,点Q在线段AD上,DQ=1,点M在线段PB上,BP=3BM.
(Ⅰ)证明:AM∥平面PCQ;
(Ⅱ)若平面PAD⊥平面ABCD,求直线AC与平面PCQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:x-y+2=0与圆C:(x+2)2+(y-1)2=4相交于A,B两点,则$\overrightarrow{AB}•\overrightarrow{AC}$等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tanα=2,则tan(α-$\frac{π}{4}$)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合M={x|x=3n,n∈N},集合N={x|x=3n,n∈N},则集合M与集合N的关系(  )
A.M⊆NB.N⊆MC.M∩N=∅D.M?N且N?M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100 分)作为样本(样本容量为n )进行统计.按照[50,60),[60,70)[70,80)[80,90)[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100)的数据).
(1)求样本容量n 和频率分布直方图中的x,y 的值;
(2)在选取的样本中,从竞赛成绩在80分以上的学生中随机抽取2 名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在[90,100)内的概率.

查看答案和解析>>

同步练习册答案