【题目】如图,等腰梯形
中
,
,
为
的三等分点,以
为折痕把△
折起,使点
到达点
的位置,且
与平面
所成角的正切值为
.
(1)证明:平面
平面
;
(2)求二面角
的余弦值.
![]()
![]()
【答案】(1)见解析(2)![]()
【解析】
(1)根据折叠前后关系可得
再根据线面垂直判定定理可得
,最后根据面面垂直判定定理得结果,(2)作
,垂足为O,则易得
平面
,过O作
,交
于G.以O为坐标原点,
的方向分别为
轴的正方向建立空间直角坐标系,设立各点坐标,列方程组解得各面法向量,利用向量数量积解得法向量夹角,最后根据二面角与向量夹角关系得结果.
(1)证明:依题意得
,
所以
,
因为
,所以平面
平面
.
(2)假设
,由(1)过P作
,垂足为O,则
平面
,
过O作
,交
于G.
以O为坐标原点,
的方向分别为
轴的正方向建立空间直角坐标系,
则
设平面
的法向量为
,
则
即![]()
令
,得
为平面
的一个法向量.
同理可得平面
的一个法向量为
,
,
所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
![]()
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数
,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程
中斜率与截距的最小二乘估计公式分别为
=
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,
点的极坐标为
,斜率为
的直线
经过点
.
(I)求曲线
的普通方程和直线
的参数方程;
(II)设直线
与曲线
相交于
,
两点,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异。”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线
,直线
为曲线
在点
处的切线.如图所示,阴影部分为曲线
、直线
以及
轴所围成的平面图形,记该平面图形绕
轴旋转一周所得的几何体为
.给出以下四个几何体:
![]()
![]()
① ② ③ ④
图①是底面直径和高均为
的圆锥;
图②是将底面直径和高均为
的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;
图③是底面边长和高均为
的正四棱锥;
图④是将上底面直径为
,下底面直径为
,高为
的圆台挖掉一个底面直径为
,高为
的倒置圆锥得到的几何体.
根据祖暅原理,以上四个几何体中与
的体积相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)射线
的极坐标方程为
,若射线
与曲线
的交点为
,与直线
的交点为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学的高二(1)班男同学
名,女同学
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出
名同学做实验,该同学做完后,再从小组内剩下的同学中选
名同学做实验,求选出的两名同学中恰有
名女同学的概率;
(3)实验结束后,第一次做实验的同学得到的实验数据为
,第二次做实验的同学得到的实验数据为
,请问哪位同学的实验更稳定?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com