精英家教网 > 高中数学 > 题目详情
6.若-x2+5x-6>0,则$\sqrt{4{x}^{2}-12x+9}$+3|x-3|等于(  )
A.5x-12B.12-5xC.6-xD.x-6

分析 由-x2+5x-6>0,得2<x<3,由此利用$\sqrt{4{x}^{2}-12x+9}$+3|x-3|=$\sqrt{(2x-3)^{2}}$+3|x-3|,能求出结果.

解答 解:∵-x2+5x-6>0,
∴x2-5x+6<0,
解得2<x<3,
∴$\sqrt{4{x}^{2}-12x+9}$+3|x-3|=$\sqrt{(2x-3)^{2}}$+3|x-3|
=|2x-3|+3|x-3|
=2x-3+3(3-x)
=6-x.
故选:C.

点评 本题考查根式与分数指数幂的互化及化简运算,是基础题,解题时要认真审题,注意根式与分数指数幂的互化公式及绝对值性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.2016年里约奥运会在巴西里约举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用. 假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期 望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex-ax,x∈R.
(1)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;
(2)在(1)的条件下,求证:f(x)>0;
(3)求证:lnx<x;
(4)a>1时,求函数f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某算法的程序框图如图所示.如果从集合{x|-5≤x≤5,x∈Z}中任取一个数作为x值输入,则输出的y值大于或等于3的概率为(  )
A.$\frac{3}{10}$B.$\frac{3}{11}$C.$\frac{7}{10}$D.$\frac{7}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等差数列{an}满足a5=14,a7=20,数列{bn}的前n项和为Sn,且bn=2-2Sn
(I)求数列{an}的通项公式;
(II)证明:数列{bn}是等比数列,并求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{1}{3}{x^3}-alnx-\frac{1}{3}(a∈R,a≠0)$.
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数y=f(x)的单调区间与极值.
(3)若对任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=lnx-\frac{a(x-1)}{x}(a∈R)$.
(Ⅰ)若a=1,求y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)求证:不等式$\frac{1}{lnx}-\frac{1}{x-1}<\frac{1}{2}$对一切的x∈(1,2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(I)已知函数$f(x)=\frac{1}{{{{(1+x)}^2}}}+\frac{1}{{{{(1-x)}^2}}}$(0≤x<1),求y=f(x)的单调区间;
(Ⅱ)若0<α<β<1,0≤x<1,求证:(1+x)α-2+(1-x)α-2≥(1+x)β-2+(1-x)β-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.求值sin50°•(tan45°+$\sqrt{3}$tan10°)=1.

查看答案和解析>>

同步练习册答案