分析 (I)设等差数列{an}的公差为d,由a5=14,a7=20,可得a1+4d=14,a1+6d=20,解得a1,d,即可得出通项公式.
(II)bn=2-2Sn,可得b1=2-2b1,解得b1.n≥2时,bn-1=2-2Sn-1,可得bn-bn-1=-2bn,化为bn=$\frac{1}{3}$bn-1.利用等比数列的定义通项公式即可得出.
解答 (I)解:设等差数列{an}的公差为d,∵a5=14,a7=20,
∴a1+4d=14,a1+6d=20,解得a1=2,d=3.
∴an=2+3(n-1)=3n-1.
(II)证明:∵bn=2-2Sn,∴b1=2-2b1,解得b1=$\frac{2}{3}$.
n≥2时,bn-1=2-2Sn-1,∴bn-bn-1=-2bn,化为bn=$\frac{1}{3}$bn-1.
∴数列{bn}是等比数列,首项为$\frac{2}{3}$,公比为$\frac{1}{3}$.
∴bn=$\frac{2}{3}×(\frac{1}{3})^{n-1}$=2×$(\frac{1}{3})^{n}$.
点评 本题考查了等差数列与等比数列的定义及其通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,0) | B. | (0,-2) | C. | (0,0) | D. | (2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5x-12 | B. | 12-5x | C. | 6-x | D. | x-6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com