精英家教网 > 高中数学 > 题目详情
11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线右支上,且满足|PF2|=|F1F2|,若直线PF1与圆x2+y2=a2有公共点,则该双曲线的离心率的取值范围为1<e≤$\frac{5}{3}$.

分析 设直线PF1与圆x2+y2=a2相切于点M,取PF1的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理,可得|PF1|=4b,再由双曲线的定义和a,b,c的关系及离心率公式,计算即可得到e,即可得出结论.

解答 解:设直线PF1与圆x2+y2=a2相切于点M,
则|OM|=a,OM⊥PF1
取PF1的中点N,连接NF2
由于|PF2|=|F1F2|=2c,则NF2⊥PF1,|NP|=|NF1|,
由|NF2|=2|OM|=2a,
则|NP|=2b,
即有|PF1|=4b,
由双曲线的定义可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=c+a,
4b2=(c+a)2,即4(c2-a2)=(c+a)2
4(c-a)=c+a,即3c=5a,
则e=$\frac{5}{3}$.
∵直线PF1与圆x2+y2=a2有公共点,
∴1<e≤$\frac{5}{3}$,
故答案为:1<e≤$\frac{5}{3}$.

点评 本题考查双曲线的方程和性质,考查离心率的求法,运用中位线定理和双曲线的定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.计算:
(Ⅰ)${({0.027})^{\frac{1}{3}}}-{(\frac{1}{8})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}•{(1+\sqrt{5})^0}$
(Ⅱ)$\frac{1}{2}lg25+2lg\sqrt{2}-lg\sqrt{0.1}+{log_4}32$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i为虚数单位,则($\frac{1+i}{1-i}}$)2016=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),$\overrightarrow{a}$与$\overrightarrow{b}$之间有关系|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|,其中k>0.
(1)用k表示$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)求$\overrightarrow{a}$•$\overrightarrow{b}$的最小值,并求此时$\overrightarrow{a}$•$\overrightarrow{b}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),则tan2x的值是(  )
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年里约奥运会在巴西里约举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用. 假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期 望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知“?x∈R,ax2+2ax+1≥0”为真命题,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等差数列{an}满足a5=14,a7=20,数列{bn}的前n项和为Sn,且bn=2-2Sn
(I)求数列{an}的通项公式;
(II)证明:数列{bn}是等比数列,并求其通项公式.

查看答案和解析>>

同步练习册答案