精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),则tan2x的值是(  )
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

分析 求出f(x)的导函数,根据f′(x)=$\frac{1}{2}$f(x)列出关系式,计算即可求出tan2x的值.

解答 解:求导得:f′(x)=cosx+sinx,
∵f′(x)=$\frac{1}{2}$f(x),
∴cosx+sinx=$\frac{1}{2}$(sinx-cosx),即3cosx=-sinx,
∴tanx=-3,
则tan2x=$\frac{2tanx}{1-ta{n}^{2}x}$=$\frac{3}{4}$.
故选D.

点评 此题考查了三角函数的化简求值,以及导数的运算,熟练掌握求导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知点O固定,且$|\overrightarrow{OA|}=2$,则点A的轨迹是(  )
A.一个点B.一条直线C.一个圆D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|x2-11x-12<0},集合B={x|x=3n+1,n∈Z},则A∩B等于{1,4,7,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cos(α-30°)+sinα=$\frac{3}{5}\sqrt{3}$,那么cos(60°-α)=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{-cosx}$+$\sqrt{cotx}$的定义域是(π+2kπ,$\frac{3π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线右支上,且满足|PF2|=|F1F2|,若直线PF1与圆x2+y2=a2有公共点,则该双曲线的离心率的取值范围为1<e≤$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校为了了解本校高三学生学习心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将学生随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到号码为18,抽到的40人中,编号落入区间[1,200]的人做试卷A,编号落入区间[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直线l为2ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$.
(1)判断曲线C与直线l的位置关系,写出直线l的参数方程;
(2)设直线l与曲线C的两个交点为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克).重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图.
(1)根据频率分布直方图,求重量超过505克的产品数量,
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列;
(3)从该流水线上任取5件产品,设ξ为重量超过505克的产品数量,求P(ξ=2)及ξ的数学期望和方差.

查看答案和解析>>

同步练习册答案