精英家教网 > 高中数学 > 题目详情
18.某校为了了解本校高三学生学习心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将学生随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到号码为18,抽到的40人中,编号落入区间[1,200]的人做试卷A,编号落入区间[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为12.

分析 由题意可得抽到的号码构成以18为首项、以20为公差的等差数列,求得此等差数列的通项公式,由560<20n-2≤800求得正整数n的个数,即为所求.

解答 解:设抽到的学生的编号构成数列{an},
则an=18+(n-1)×20=20n-2,
由560<20n-2≤800,n∈N*,得29≤n≤40,n有12个整数,
即做试卷C的人数为12.
故答案为:12.

点评 本题主要考查等差数列的通项公式,系统抽样的定义和方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知递减等差数列{an}中,a3a7=-12,a4+a6=4,则
(1)求数列的通项an及前n项和Sn
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.
(Ⅰ)若f′(1)=9,f(x)的图象过点(2,7),求f(x)的解析式;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)当a>2时,求f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),则tan2x的值是(  )
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex+mx-1(m∈R).
(I)讨论f(x)的单调性;
(Ⅱ)若存在正实数x0,使得f(x0)=x0lnx0,求m的最大值;
(Ⅲ)若g(x)=ln(ex-1)-lnx,且x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知“?x∈R,ax2+2ax+1≥0”为真命题,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线kx+y+1=2k,当k变动时,所有直线都通过定点(  )
A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数f(x)=x2,g(x)=2elnx,则f(x)和g(x)之间的“隔离直线”的方程为$y=2\sqrt{e}x-e$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=(a-\frac{1}{2}){x^2}+lnx$.(a∈R)
(Ⅰ)当a=0时,求f(x)在区间[$\frac{1}{e}$,e]上的最大值和最小值;
(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.
(Ⅲ)设g(x)=f(x)-2ax,$h(x)={x^2}-2bx+\frac{19}{6}$.当$a=\frac{2}{3}$时,若对于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求实数b的取值范围.

查看答案和解析>>

同步练习册答案