精英家教网 > 高中数学 > 题目详情
10.直线kx+y+1=2k,当k变动时,所有直线都通过定点(  )
A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)

分析 将直线化简成点斜式的形式得:y+1=-k(x-2),可得直线的斜率为-k且经过定点(2,-1),从而得到答案.

解答 解:将直线kx+y+1=2k化简为点斜式,可得y+1=-k(x-2),
∴直线经过定点(2,-1),且斜率为-k.
即直线kx+y+1=2k恒过定点(2,-1).
故选:A.

点评 本题给出含有参数k的直线方程,求直线经过的定点坐标.着重考查了直线的基本量与基本形式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知复数z满足(1+2i3)z=1+2i(i为虚数单位),则z的共轭复数$\overline{z}$等于(  )
A.$\frac{3}{5}$+$\frac{4}{5}i$B.-$\frac{3}{5}$+$\frac{4}{5}i$C.$\frac{3}{5}$-$\frac{4}{5}i$D.-$\frac{3}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{-cosx}$+$\sqrt{cotx}$的定义域是(π+2kπ,$\frac{3π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校为了了解本校高三学生学习心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将学生随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到号码为18,抽到的40人中,编号落入区间[1,200]的人做试卷A,编号落入区间[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.将一副三角板拼成直二面角A-BC-D,其中∠BAC=90°,AB=AC,∠BCD=90°,∠CBD=30°.
(1)求证:平面BAD⊥平面CAD;
(2)求BD与平面CAD所成的角的正切值;
(3)若CD=2,求C到平面BAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直线l为2ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$.
(1)判断曲线C与直线l的位置关系,写出直线l的参数方程;
(2)设直线l与曲线C的两个交点为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某工厂对某种产品的产量与成本的资料分析后有如表数据:
产量x(千件)2356
成本y(万元)78912
经过分析,知道产量x和成本y之间具有线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=$\hat b$x+$\hat a$;
(2)试根据(1)求出的线性回归方程,预测产量为10千件时的成本.
参考公式:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程2x•x2=1的实数解的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+x2+bx(a为实常数).
(I)若a=-2,b=-3,求f(x)的单调区间;
(Ⅱ)若b=0,且a>-2e2,求函数f(x)在[1,e]上的最小值及相应的x值;
(Ⅲ)设b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案