精英家教网 > 高中数学 > 题目详情
5.将一副三角板拼成直二面角A-BC-D,其中∠BAC=90°,AB=AC,∠BCD=90°,∠CBD=30°.
(1)求证:平面BAD⊥平面CAD;
(2)求BD与平面CAD所成的角的正切值;
(3)若CD=2,求C到平面BAD的距离.

分析 (1)要证明平面BAD⊥平面CAD,只需要证明BA⊥平面CAD,根据面面垂直,得到线面垂直,从而得证.
(2)根据BA⊥平面CAD,可得∠ADB为BD与平面CAD所成的角,设值进行计算即可.
(3)平面BAD⊥平面CAD;过C点作AD的垂线CH,即CH⊥平面BAD,则CH的长度为所求值.

解答 解:(1)∵平面BAD⊥平面CAD,CD⊥BC,CD?平面BCD
∴CD⊥平面CAB,
∵AB?平面CAB,∴CD⊥AB,
又CA⊥AB,CA∩CD=C,
∴BA⊥平面CAD
∴BA?平面CAD
所以:平面BAD⊥平面CAD;
得证
(2)由(1)可知,BA⊥平面CAD
∴∠ADB为BD与平面CAD所成的角.
设BC=1,则AB=$\sqrt{2}$,BD=$\frac{2\sqrt{3}}{3}$
sin∠ADB=$\frac{AB}{BD}=\frac{\frac{\sqrt{2}}{2}}{\frac{2\sqrt{3}}{3}}=\frac{\sqrt{6}}{4}$,
cos∠ADB=$\frac{\sqrt{10}}{4}$
tan∠ADB=$\frac{\sqrt{15}}{5}$
BD与平面CAD所成的角的正切值为$\frac{\sqrt{15}}{5}$.
(3)由(1)可知:平面BAD⊥平面CAD;
∴过C点作AD的垂线CH,垂足为H,则CH⊥平面BAD,
故:CH的长度为C到平面BAD的距离.
∵CD=2,
∴BC=$2\sqrt{6}AC=\sqrt{6}$
∴CH=$\frac{2\sqrt{6}}{\sqrt{4+6}}=\frac{2\sqrt{15}}{5}$.

点评 本题考查了以面面垂直为依托,考查面面垂直的性质和判定,考查了线面角问题以及点到平面的距离问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在复平面上,复数$\frac{2+i}{i}$的共轭复数对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{24}}$]上的最大值和最小值以及取得最大值和最小值时自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex+mx-1(m∈R).
(I)讨论f(x)的单调性;
(Ⅱ)若存在正实数x0,使得f(x0)=x0lnx0,求m的最大值;
(Ⅲ)若g(x)=ln(ex-1)-lnx,且x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下面是关于向量的四个命题,其中的真命题为(  )
p1:同一组基底下的同一向量的表现形式是唯一的.
p2:$\overrightarrow{a}$∥$\overrightarrow{c}$是($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)的充分条件.
p3:在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,则△ABC为钝角三角形.
p4:已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{3}{4}$π,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影是$\sqrt{2}$.
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线kx+y+1=2k,当k变动时,所有直线都通过定点(  )
A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn=1-an,其中n∈N*
(I)求{an}的通项公式;
(II)若bn=nan,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知是x1方程logax+x-2016=0(a>0,a≠1)的根,x2是方程ax+x-2016=0(a>0,a≠1)的根,则x1+x2的值为(  )
A.2016B.2017C.1008D.1007

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-ax2+a(a∈R),其导函数为f′(x).
(Ⅰ)求函数g(x)=f′(x)+(2a-1)x的极值;
(Ⅱ)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案