精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|x2-11x-12<0},集合B={x|x=3n+1,n∈Z},则A∩B等于{1,4,7,10}.

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式变形得:(x-12)(x+1)<0,
解得:-1<x<12,即A={x|-1<x<12},
∵B={x|x=3n+1,n∈Z},
∴A∩B={1,4,7,10},
故答案为:{1,4,7,10}.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某奶茶店为了促销,准备推出“掷骰子(投掷各面数字为1到6的均匀正方体,看面朝上的点数)赢代金券”的活动,游戏规则如下:顾客每次消费后,可同时投掷两枚骰子一次,赢得一等奖、二等奖、三等奖和感谢奖四个等级的代金券,用于在以后来店消费中抵用现金.设事件A:“两连号”;事件B:“两个同点”;事件C:“同奇偶但不同点”.
①将以上三种掷骰子的结果,按出现概率由低到高,对应定为一、二、三等奖要求的条件;
②本着人人有奖原则,其余不符合一、二、三等奖要求的条件均定为感谢奖.请替该店定出各个等级奖依次对应的事件并求相应概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知递减等差数列{an}中,a3a7=-12,a4+a6=4,则
(1)求数列的通项an及前n项和Sn
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简:$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是(  )
A.27B.16C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i为虚数单位,则($\frac{1+i}{1-i}}$)2016=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.
(Ⅰ)若f′(1)=9,f(x)的图象过点(2,7),求f(x)的解析式;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)当a>2时,求f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),则tan2x的值是(  )
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数f(x)=x2,g(x)=2elnx,则f(x)和g(x)之间的“隔离直线”的方程为$y=2\sqrt{e}x-e$.

查看答案和解析>>

同步练习册答案