分析 (1)利用诱导公式化简所给的式子,可得结果.
(2)利用诱导公式化简条件可得f(x)=-sinx,从而求得f(-$\frac{31π}{3}$)的值.
解答 解:(1)$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$=$\frac{tanα•cosα•cosα}{-cosα•sinα}$=$\frac{sinαcosα}{-sinαcosα}$=-1,
(2)∵已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$=$\frac{sinx•cosx•(-tanx)}{sinx}$=-sinx,
求f(-$\frac{31π}{3}$)=-sin(-$\frac{31π}{3}$)=sin$\frac{31π}{3}$=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
点评 本题主要考查利用诱导公式进行化简求值,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{{\sqrt{7}}}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{30}}{5}$ | B. | $\frac{\sqrt{30}}{5}$ | C. | $\frac{7}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$+$\frac{4}{5}i$ | B. | -$\frac{3}{5}$+$\frac{4}{5}i$ | C. | $\frac{3}{5}$-$\frac{4}{5}i$ | D. | -$\frac{3}{5}-\frac{4}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com