精英家教网 > 高中数学 > 题目详情
15.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线经过点(-3,4),则此双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{4}{3}$D.$\frac{5}{4}$

分析 求出双曲线的渐近线方程,代入点(-3,4),可得b=$\frac{4}{3}$a,再由c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{3}$a,即可得到所求值.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线方程为y=±$\frac{b}{a}$x,
由渐近线过点(-3,4),
可得4=$\frac{3b}{a}$,
即b=$\frac{4}{3}$a,
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{3}$a,
可得e=$\frac{c}{a}$=$\frac{5}{3}$.
故选:A.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的性质,主要是渐近线方程和离心率,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知△ABC是锐角三角形,若∠A>∠B>∠C,则(  )
A.cosA>cosB且sinB>cosCB.cosA<cosB且sinB>cosC
C.cosB>cosC且sinA<cosBD.cosA<cosC且sinB<cosC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-m|-|x-2|.
(1)若函数f(x)的值域为[-4,4],求实数m的值;
(2)若不等式f(x)≥|x-4|的解集为M,且[2,4]⊆M,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正△ABC中,点D、E分别在边AC、AB上,且$AD=\frac{1}{3}AC$,$AE=\frac{2}{3}AB$,BD、CE相交于点F.
(Ⅰ)求证:A、E、F、D四点共圆,并求∠BFC的大小;
(Ⅱ)求证:2BF•BD=CF•CE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某手机配件生产流水线共有甲、乙两条,产量s(单位:个)与时间t(单位:天)的关系如图所示,则接近t0天时,下列结论中正确的是(  )
A.甲的日生产量大于乙的日生产量
B.甲的日生产量小于乙的日生产量
C.甲的日生产量等于乙的日生产量
D.无法判定甲的日生产量与乙的日生产量的大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,且c2=a2+b2-ab,则角C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某奶茶店为了促销,准备推出“掷骰子(投掷各面数字为1到6的均匀正方体,看面朝上的点数)赢代金券”的活动,游戏规则如下:顾客每次消费后,可同时投掷两枚骰子一次,赢得一等奖、二等奖、三等奖和感谢奖四个等级的代金券,用于在以后来店消费中抵用现金.设事件A:“两连号”;事件B:“两个同点”;事件C:“同奇偶但不同点”.
①将以上三种掷骰子的结果,按出现概率由低到高,对应定为一、二、三等奖要求的条件;
②本着人人有奖原则,其余不符合一、二、三等奖要求的条件均定为感谢奖.请替该店定出各个等级奖依次对应的事件并求相应概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$过点$({2,\sqrt{3}})$,离心率为$\sqrt{2}$.
(1)求双曲线的标准方程和焦点坐标;
(2)已知点P在双曲线上,且∠F1PF2=90°,求点P到x轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简:$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

同步练习册答案