精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2-ax-alnx(a∈R).
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)在(1)的条件下,求证:f(x)≥$\frac{{x}^{3}}{3}$+$\frac{2{x}^{2}}{2}$-4x+$\frac{11}{6}$;
(3)当x∈[e,+∞)时,f(x)≥0恒成立,求a的取值范围.

分析 (1)求导数,利用函数f(x)在x=1处取得极值,可得f′(1)=0,即可求a的值.
(2)构造函数,g(x)=g(x)=f(x)-($\frac{{x}^{3}}{3}$+$\frac{2{x}^{2}}{2}$-4x+$\frac{11}{6}$)=$\frac{{x}^{3}}{3}$-$\frac{3{x}^{2}}{2}$+3x-lnx-$\frac{11}{6}$,根据导数和函数的最值的关系求出最小值即可证明.
(3)当x∈[e,+∞),f(x)≥0恒成立,等价于a≤$\frac{{x}^{2}}{x+lnx}$在x∈[e,+∞)时恒成立,求最值,即可求a的取值范围

解答 解:(1)f′(x)=2x-a-$\frac{a}{x}$,
由题意可得f′(1)=2-2a=0,解得a=1;
经检验,a=1时f(x)在x=1处取得极值,
所以a=1.
(2)由(1)知,f(x)=x2-x-lnx,x>0,
令g(x)=f(x)-($\frac{{x}^{3}}{3}$+$\frac{2{x}^{2}}{2}$-4x+$\frac{11}{6}$)=$\frac{{x}^{3}}{3}$-$\frac{3{x}^{2}}{2}$+3x-lnx-$\frac{11}{6}$,
则g′(x)=x2-3x+3-$\frac{1}{x}$=$\frac{(x-1)^{3}}{x}$,
可知g(x)在(0,1)为减函数,在(1,+∞)为增函数,
所以g(x)≥g(1)=0,
故:f(x)≥$\frac{{x}^{2}}{3}$+$\frac{2{x}^{2}}{2}$-4x+$\frac{11}{6}$;
(3)由x∈[e,+∞)知,x+lnx>0,
所以f(x)≥0恒成立等价于a≤$\frac{{x}^{2}}{x+lnx}$在x∈[e,+∞)时恒成立,
令h(x)=$\frac{{x}^{2}}{x+lnx}$,x∈[e,+∞),
有h′(x)=$\frac{x(x-1+2lnx)}{(x+lnx)^{2}}$>0,
所以h(x)在[e,+∞)上是增函数,
有h(x)≥h(e)=$\frac{{e}^{2}}{e+1}$,
所以a≤$\frac{{e}^{2}}{e+1}$

点评 本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值的情况.本小题对考生的逻辑推理能力与运算求解有较高要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等差数列{an}满足a5=14,a7=20,数列{bn}的前n项和为Sn,且bn=2-2Sn
(I)求数列{an}的通项公式;
(II)证明:数列{bn}是等比数列,并求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=lnx-\frac{a(x-1)}{x}(a∈R)$.
(Ⅰ)若a=1,求y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)求证:不等式$\frac{1}{lnx}-\frac{1}{x-1}<\frac{1}{2}$对一切的x∈(1,2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(I)已知函数$f(x)=\frac{1}{{{{(1+x)}^2}}}+\frac{1}{{{{(1-x)}^2}}}$(0≤x<1),求y=f(x)的单调区间;
(Ⅱ)若0<α<β<1,0≤x<1,求证:(1+x)α-2+(1-x)α-2≥(1+x)β-2+(1-x)β-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-3x2-9x+2在[-2,2]最大值是(  )
A.-25B.7C.0D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数xi和10个在区间[0,1]上的均匀随机数yi(i∈N*,1≤i≤10),其数据如表的前两行.
x2.501.011.901.222.522.171.891.961.362.22
y0.840.250.980.150.010.600.590.880.840.10
lnx0.900.010.640.200.920.770.640.670.310.80
由此可得这个曲边三角形面积的一个近似值为$\frac{3}{5}$(e-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+alnx(a≠0,a∈R).
(1)若对任意实数x∈[1,+∞),使得f(x)≥(a+2)x恒成立,求实数a的取值范围;
(2)证明:对n∈N+,不等式$\frac{1}{ln(n+1)}+\frac{1}{ln(n+2)}+…+\frac{1}{ln(n+2016)}>\frac{2016}{n(n+2016)}$成立.

查看答案和解析>>

同步练习册答案