精英家教网 > 高中数学 > 题目详情
12.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数xi和10个在区间[0,1]上的均匀随机数yi(i∈N*,1≤i≤10),其数据如表的前两行.
x2.501.011.901.222.522.171.891.961.362.22
y0.840.250.980.150.010.600.590.880.840.10
lnx0.900.010.640.200.920.770.640.670.310.80
由此可得这个曲边三角形面积的一个近似值为$\frac{3}{5}$(e-1).

分析 向矩形区域$\left\{{\begin{array}{l}{1≤x≤e}\\{0≤y≤1}\end{array}}\right.$内随机抛掷10个点,有6个点在曲边三角形内,由此根据矩形区域的面积为e-1,能求出曲边三角形面积的近似值.

解答 解:由表可知,向矩形区域$\left\{{\begin{array}{l}{1≤x≤e}\\{0≤y≤1}\end{array}}\right.$内随机抛掷10个点,
其中有6个点在曲边三角形内,其频率为$\frac{6}{10}=\frac{3}{5}$.
∵矩形区域的面积为e-1,
∴曲边三角形面积的近似值为$\frac{3}{5}(e-1)$.
故答案为:$\frac{3}{5}(e-1)$.

点评 本题考查曲边三角形面积的一个近似值的求法,是中档题,解题时要认真审题,注意概率的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,则使得z=2y-3x取得最小值的最优解是(  )
A.(1,0)B.(0,-2)C.(0,0)D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-ax-alnx(a∈R).
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)在(1)的条件下,求证:f(x)≥$\frac{{x}^{3}}{3}$+$\frac{2{x}^{2}}{2}$-4x+$\frac{11}{6}$;
(3)当x∈[e,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知${a_n}=\frac{n(n+1)}{2}$,删除数列{an}中所有能被2整除的数,剩下的数从小到大排成数列{bn},则b21=861.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设抛物线C:y2=4x的焦点为F,直线l过点M(2,0)且与C交于A,B两点,|BF|=$\frac{3}{2}$,若|AM|=λ|BM|,则λ=(  )
A.$\frac{3}{2}$B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线f(x)=ax+bx2lnx在点(1,f(1))处的切线是y=2x-1.
(Ⅰ)求实数a、b的值.
(Ⅱ)若f(x)≥kx2+(k-1)x恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足:a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}({n∈{N^*}})$,则该数列的前2012项积a1•a2•…•a2011•a2012=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(sinx+cosx)2-2cos2x(x∈R).
(1)求函数f(x)的周期和递增区间;
(2)若函数g(x)=f(x)-m在[0,$\frac{π}{2}$]上有两个不同的零点x1、x2,求实数m的取值范围.
并计算tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xe-x(x∈R),求函数f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案