精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c(a≠0)
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:①f(-1+x)=f(-1-x)且f(x)≥0;
②对0≤f(x)-x≤
12
(x-1)2.若存在,求出a,b,c的值;若不存在,请说明理由.
分析:(1)通过对二次函数对应方程的判别式进行分析判断方程根的个数,从而得到零点的个数;
(2)存在性问题的一般处理方法就是假设存在,然后根据题设条件求得参数的值.
解答:解:(1)∵f(-1)=0,
∴a-b+c=0,
即b=a+c,
故△=b2-4ac=(a+c)2-4ac=(a-c)2
当a=c时,△=0,函数f(x)有一个零点;
当a≠c时,△>0,函数f(x)有两个零点.
(2)假设存在a,b,c满足题设,由条件①知抛物线的对称轴为x=-1,
且f(x)min=0;
-
b
2a
=-1
△=b2-4ac=0

b=2a
b2=4ac
,解得a=c.
在条件②中令x=1,有0≤f(1)-1≤0,
∴f(1)=1,
即a+b+c=1,
a+b+c=1
b=2a
a=c

解得a=c=
1
4
,b=
1
2
成立.
∴存在a=c=
1
4
,b=
1
2
,使f(x)同时满足条件①②.
点评:本题考查函数零点个数与方程根的个数问题,以及存在性问题的处理方式,利用二次函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案