精英家教网 > 高中数学 > 题目详情
设实数x,y满足条件,若目标函数Z=ax+by(a>0,b>0)的最大值为12.
(1)画出不等式组的平面区域图;      
(2)求的最小值.
【答案】分析:(1)由已知中的约束条件,我们先找出平面区域的边界线,进而分析平面区域所表示的区域在边界的哪一侧,可得满足约束条件的平面区域图;      
(2)由(1)中可行域及a>0,b>0,可得目标函数Z=ax+by在A点取最大值为12,进而得到4a+6b=12,利用基本不等式可得的最小值.
解答:解:(1)满足条件的平面区域如下图阴影部分所示:

(2)∵a>0,b>0,
∴在A点目标函数Z=4a+6b=12

=()•()=(+)+()≥++2=
的最小值为
点评:本题考查的知识点是简单线性规划,基本不等式,其中分析出目标函数Z=ax+by在A点取最大值是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y满足条件
x≥0
x≤y
x+2y-4≤0
,则z=2x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x、y满足条件
x+y≤3
y≤x-1
y≥0
,则
y
x
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足条件
1≤lg(xy2)≤2
-1≤lg
x2
y
≤2
,则lg
x3
y4
的取值范围为
[-4,3]
[-4,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)设实数x,y满足条件
x≥0
x≤y
x+2y≤3
则z=2x-y的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足条件
3x+y-5≤0
x+2y-5≤0
x≥0,y≥0
,若目标函数z=ax+y仅在点P(1,2)处取得最大值,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案