精英家教网 > 高中数学 > 题目详情
6.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+4)=f(x),且当x∈[0,2]时,f(x)=2x-1,若在区间(-2,6]内关于x的方程f(x)=loga(x+2)恰有3个不同的实数根,则实数a的取值范围是($\root{3}{4}$,2).

分析 先利用已知f(x)是定义在R上的偶函数求出在区间[0,2]上的解析式,再利用周期性f(x)=f(x+4)求出函数f(x)在区间[2,4]上的解析式,然后在画出图象,进而求出a的取值范围

解答 解:x∈[0,2],f(x)=2x-1,
∵对任意x∈R,都有f(x)=f(x+4),
∴当x∈[2,4]时,(x-4)∈[-2,0],
∵f(x)是定义在R上的偶函数,
∴f(x)=f(x-4)=2x-4-1;
当x∈[4,6]时,(x-4)∈[0,2],∴f(x)=f(x-4)=2x-4-1.
∵若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0恰有三个不同的实数根,
∴函数y=f(x)与函数y=loga(x+2)在区间(-2,6]上恰有三个交点,
故函数f(x)在区间(-2,6]上的图象如下图所示:

通过画图可知:
恰有三个交点的条件是$\left\{\begin{array}{l}{{log}_{a}^{(6+2)}>3}\\{{log}_{a}^{2+2}<3}\end{array}\right.$,解得 ${2}^{\frac{2}{3}}$<a<2,
即 $\root{3}{4}$<a<2,因此所求的a的取值范围为($\root{3}{4}$,2).
故答案为:($\root{3}{4}$,2).

点评 本题综合考查了函数的奇偶性、周期性、函数的交点及方程的根,熟练掌握函数的性质及数形结合是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(文)试卷(解析版) 题型:解答题

已知函数

(1)当时,求函数的单调区间;

(2)若函数上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$,和$\frac{{T}_{16}}{{T}_{12}}$ 成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一组数据x1,x2,…,x10的方差是2,且(x1-3)2+(x2-3)2+…+(x10-3)2=380,则$\overline{x}$=-3或9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知不等式x2-2ax+a<0的解集为∅,则实数a的取值范围是(  )
A.[0,1]B.(0,1]C.[0,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{1}{3}$x3-x,数列{an}满足a1≥1,an+1≥f(an+1).
(1)求证:an≥2n-1;
(2)证明:$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{{2}^{2}}{{a}_{2}{a}_{3}}$+…+$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)的定义域为R,且f(x)=f(-x),f(x+1)=-f(x),若f(x)在[-3,-2]上是减函数,$\frac{π}{4}$<α<β<$\frac{π}{2}$,则(  )
A.f(sinα)>f(sinβ)B.f(cosα)>f(cosβ)C.f(tanα)>f(tanβ)D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=x2+2(a-2)x+4,如果对x∈[-3,1],f(x)>0恒成立,则实数a的取值范围为(-$\frac{1}{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O是△ABC所在平面上一点,满足|$\overrightarrow{OA}$|2+|$\overrightarrow{BC}$|2=|$\overrightarrow{OB}$|2+|$\overrightarrow{CA}$|2,则点O(  )
A.在与边AB垂直的直线上B.在∠A的平分线所在直线上
C.在边AB的中线所在直线上D.以上都不对

查看答案和解析>>

同步练习册答案