精英家教网 > 高中数学 > 题目详情
(满分10分)(Ⅰ) 设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,求证为定值并求出此定值;
(Ⅱ)设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,利用(Ⅰ)的结论直接写出的值。(不必写出推理过程)
(Ⅰ)见解析;(Ⅱ)

试题分析:(Ⅰ)
         …………………………4分
在椭圆上有………………6分
所以       …………………………8分
(Ⅱ)         ……………………10分
点评:本题较易,(I)利用直线斜率的坐标表示,结合点在椭圆上,证明了为定值,(II)则通过类比推理,得出结论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆C:的左、右焦点分别为,P是C上的点,
=,则C的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点MN,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆是其左顶点和左焦点,是圆上的动点,若,则此椭圆的离心率是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,已知椭圆是椭圆的顶点,若椭圆的离心率,且过点.

(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的焦点F1(-,0)和F2,0),长轴长6。
(1)求椭圆C的标准方程。
(2)设直线交椭圆C于A、B两点,求线段AB的中点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中,过焦点且垂直于长轴的直线被椭圆截得的线段长为,焦点到相应准线的
距离也为,则该椭圆的离心率为          

查看答案和解析>>

同步练习册答案