精英家教网 > 高中数学 > 题目详情
已知椭圆是其左顶点和左焦点,是圆上的动点,若,则此椭圆的离心率是       

试题分析:因为,所以当点P分别在(±b,0)时比值相等,即,同除以a2可得e2+e-1=0,解得离心率e=
点评:求圆锥曲线的离心率是常见题型,常用方法:①直接利用公式;②利用变形公式:(椭圆)和(双曲线)③根据条件列出关于a、b、c的关系式,两边同除以a,利用方程的思想,解出
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分10分)(Ⅰ) 设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,求证为定值并求出此定值;
(Ⅱ)设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,利用(Ⅰ)的结论直接写出的值。(不必写出推理过程)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的一个焦点是,那么    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是椭圆上一点,为椭圆的一个焦点,且轴,焦距,则椭圆的离心率是(     )
A.B.-1C.-1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点分别是椭圆)的左顶点和上顶点,椭圆的左右焦点分别是,点是线段上的动点,如果的最大值是,最小值是,那么,椭圆的的标准方程是                   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个顶点是,且离心率为的椭圆的标准方程是________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

标准方程下的椭圆的短轴长为,焦点,右准线轴相交于点,且,过点的直线和椭圆相交于点.
(1)求椭圆的方程和离心率;
(2)若,求直线的方程.

查看答案和解析>>

同步练习册答案