精英家教网 > 高中数学 > 题目详情
13.设f(x)=$\frac{(x+a)lnx}{x+1}$(a∈R)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求实数m的取值范围;
(2)设函数g(x)=(x+1)f(x)-b(x-1)在[1,e]上有且只有一个零点,求实数b取值范围.

分析 (1)求函数的导数,根据导数的几何意义即可得到结论.求a的值;将不等式恒成立转化为求函数的最值,求函数的导数,利用导数进行求解即可;
(2)将条件转化为函数g(x)=xlnx-a(x-1)在(1,e]上没有零点,即可得到结论.

解答 解:f′(x)=$\frac{(\frac{x+a}{x}+lnx)(x+1)-(x+a)lnx}{{(x+1)}^{2}}$,
∵y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,
∴f′(1)=$\frac{1}{2}$,
∴$\frac{2(1+a)}{4}$=$\frac{1}{2}$,∴1+a=1,解得a=0.
(1)f(x)=$\frac{xlnx}{x+1}$,
若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,
即lnx≤m(x-$\frac{1}{x}$),
设g(x)=lnx-m(x-$\frac{1}{x}$),
即对于任意的x∈[1,+∞),g(x)≤0,
g′(x)=$\frac{1}{x}$-m(1+$\frac{1}{{x}^{2}}$)=$\frac{-{mx}^{2}+x-m}{{x}^{2}}$,
①若m≤0,g′(x)>0,则g(x)≥g(1)=0,这与题设g(x)≤0矛盾.
②若m>0,方程-mx2+x-m=0的判别式△=1-4m2
当△≤0,即m≥$\frac{1}{2}$时,g′(x)≤0.
∴g(x)在(1,+∞)上单减,
∴g(x)≤g(1)=0,不等式成立.
当0<m<$\frac{1}{2}$时,方程-mx2+x-m=0,设两根为x1,x2,(x1<x2),
x1=$\frac{1-\sqrt{1-{4m}^{2}}}{2m}$∈(0,1),x2=$\frac{1+\sqrt{1-{4m}^{2}}}{2m}$∈(1,+∞),
当x∈(1,x1),g′(x)>0,g(x)单调递增,g(x)>g(1)=0,与题设矛盾,
综上所述,m≥$\frac{1}{2}$.
(2)因为g(x)=xlnx-b(x-1),注意到g(1)=0
所以,所求问题等价于函数g(x)=xlnx-b(x-1)在(1,e]上没有零点.
因为g′(x)=lnx+1-b,
所以由g′(x)<0?lnx+1-b<0?0<x<eb-1
g′(x)>0?x>eb-1
所以g(x)在(0,eb-1)上单调递减,在(eb-1,+∞)上单调递增.
①当eb-1≤1,即b≤1时,g(x)在(1,e]上单调递增,所以g(x)>g(1)=0
此时函数g(x)在(1,e]上没有零点,
②当1<eb-1<e,即1<b<2时,g(x)在[1,eb-1)上单调递减,在(eb-1,e]上单调递增.
又因为g(1)=0,g(e)=e-be+b,g(x)在(1,e]上的最小值为g(eb-1)=b-eb-1
所以,(i)当1<b≤$\frac{e}{e-1}$时,g(x)在[1,e]上的最大值g(e)≥0,
即此时函数g(x)在(1,e]上有零点.
(ii)当$\frac{e}{e-1}$<b<2时,g(e)<0,即此时函数g(x)在(1,e]上没有零点.
③当e≤eb-1 即b≥2时,g(x)在[1,e]上单调递减,
所以g(x)在[1,e]上满足g(x)<g(1)=0,
此时函数g(x)在(1,e]上没有零点
综上,所求的a的取值范围是b≤1或$\frac{e}{e-1}$<b.

点评 本题主要考查导数的综合应用以及函数切线的求解,考查学生的运算能力,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知p,q为命题,则“p∨q为假”是“p∧q为假”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线l过点(-1,2)且与直线x-3y+5=0垂直,则直线l的方程是3x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若将函数f(x)=cosx(sinx+cosx)-$\frac{1}{2}$的图象向右平移φ个单位,所得函数是奇函数,则φ的最小正值是(  )
A.$\frac{3π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,$\sqrt{3}$),若向量$\overrightarrow{c}$满足($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{c}$|的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知A,B,Q是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的三个顶点,椭圆的离心率e=$\frac{\sqrt{3}}{2}$,点B到直线AQ的距离是$\frac{4\sqrt{5}}{5}$,设P是椭圆上异于A,B,Q的任意一点,直线PA,PB分别与经过点Q,且与x轴垂直的直线相交于M,N两点.
(1)求椭圆的方程;
(2)求证:以MN为直径的圆C与圆心在x轴上的定圆相切,并求出定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-ex+mx,其中m∈R,函数g(x)=f(x)+ex+1.
(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;
(Ⅱ)当m=-e时,
(i)求函数g(x)的最大值;
(ii)记函数φ(x)=|g(x)|-$\frac{g(x)+ex-1}{x}$-$\frac{1}{2}$,证明:函数φ(x)没有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以下三个命题中,真命题有(  )
①若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为4;
②对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大;
③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在正方体ABCD-A1B1C1D1中,点M在B1C上,点N在BD上,并且MN∥平面AA1B1B,求证:CM=DN.

查看答案和解析>>

同步练习册答案