精英家教网 > 高中数学 > 题目详情
16.同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是(  )
A.f(x)=-x|x|B.$f(x)=x+\frac{1}{x}$C.f(x)=tanxD.$f(x)=\frac{lnx}{x}$

分析 根据函数奇偶性的定义域判断出f(x)是奇函数、化简f(x)后由二次函数的单调性判断出f(x)的单调性,可判断A;由基本初等函数的单调性判断B、C,根据f(x)的定义域判断D.

解答 解:A、因为f(x)的定义域是R,且f(x)=x|-x|=-f(x),
所以f(x)是奇函数,
因为f(x)=-x|x|=$\left\{\begin{array}{l}{-{x}^{2},x>0}\\{{x}^{2},x≤0}\end{array}\right.$,所以f(x)在定义域上是减函数,
可知符合题中条件,A正确;
B、函数$f(x)=x+\frac{1}{x}$在定义域{x|x≠0}不是单调函数,不符合题意,B不正确;
C、f(x)=tanx在定义域内不是单调函数,C不正确;
D、函数f(x)的定义域是(0,+∞),关于原点不对称,不是奇函数,D不正确.
故选A.

点评 本题考查函数奇偶性的定义,以及基本初等函数的单调性的应用,熟练掌握基本初等函数的奇偶性和单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知长方形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离心率为(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是(  )
A.5、3、0.8B.10、6、0.8C.5、3、0.6D.10、6、0.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图(2)).
(1)求证:A1E⊥平面BEP;
(2)求二面角B-A1P-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一束光线从点M(4,5)射出,到点N(2,0)后被x轴反射,求该光线及反射光线所在的直线方程(请用直线的一般方程表示解题结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2cos2x+2$\sqrt{3}sinxcosx(x∈{R})$.
(1)求函数f(x)的单调递增区间;
(2)若方程f(x)-t=1在$x∈[0,\frac{π}{2}]$内恒有两个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列各数210(6)、1000(4)、111111(2)中最小的数是111111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数a,b,c均大于0.
(1)求证:$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$≤a+b+c;
(2)若a+b+c=1,求证:$\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ac}{a+c}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若等差数列{an}的前7项和S7=21,且a2=-1,则a6=7.

查看答案和解析>>

同步练习册答案