精英家教网 > 高中数学 > 题目详情
11.一束光线从点M(4,5)射出,到点N(2,0)后被x轴反射,求该光线及反射光线所在的直线方程(请用直线的一般方程表示解题结果)

分析 通过已知条件直接求出入射光线所在的直线方程,利用对称知识求出反射光线的直线方程即可.

解答 解:一条光线从点M(4,5)射出,经过点N(2,0),
则入射光线所在直线方程为:$\frac{5-0}{4-2}$=$\frac{y-0}{x-2}$,
即5x-2y-10=0;,
∵一条光线从点M(4,5)射出,经过点N(2,0),又经x轴反射,
∴入射光线和反射光线关于x轴对称,
∴反射光线所在的直线方程:5x-2y-10=0.

点评 本题考查直线对称性知识的应用,直线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在学习数学的过程中,我们通常运用类比猜想的方法研究问题.
(1)在圆x2+y2=r2(r>0)中,AB为圆的任意一条直径,C为圆上异于A、B的任意一点,当直线AC与BC的斜率kAC、kBC存在时,求kAC•kBC的值;
(2)在椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$中,AB为过椭圆中心的任意一条弦,C为椭圆上异于A、B的任意一点,当直线AC与BC的斜率kAC、kBC存在时,求kAC•kBC的值;
(3)直接写出椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中类似的结论(不用证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式比较大小正确的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,函数f(x)=${log_2}(\frac{1}{x}+a)$.
(1)若f(2)=-3,求实数a的值;
(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[$\frac{1}{2}$,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且对于方程f(x)2-af(x)+a2-3=0有7个实数根,则实数a的取值范围是$\sqrt{3}<a<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是(  )
A.f(x)=-x|x|B.$f(x)=x+\frac{1}{x}$C.f(x)=tanxD.$f(x)=\frac{lnx}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,-2).
(Ⅰ)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若$\overrightarrow{a}$与$\overrightarrow{b}$所成角为钝角,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是首项为1的单调递增的等比数列,且满足a3,$\frac{5}{3}{a_4},{a_5}$成等差数列.
(1)求{an}的通项公式;
(2)若bn=log3(an•an+1)(n∈N*),求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1处的切线的斜率k=-1.
(1)求a的值;
(2)证明:f(x)<$\frac{2}{e}$.
(3)若正实数m,n满足mn=1,证明:$\frac{1}{e^m}+\frac{1}{e^n}$<2(m+n).

查看答案和解析>>

同步练习册答案