给出四个函数,分别满足①f(x+y)=f(x)+f(y),②g(x+y)=g(x)·g(y),③h(x·y)=h(x)+h(y),④m(x·y)=m(x)·m(y).又给出四个函数的图像,那么正确的匹配方案可以是 ( )
甲 乙 丙 丁
A.①甲,②乙,③丙,④丁 | B.①乙,②丙,③甲,④丁 |
C.①丙,②甲,③乙,④丁 | D.①丁,②甲,③乙,④丙 |
D
解析试题分析::①f(x)=x,这个函数可使 f(x+y)=x+y=f(x)+f(y)成立,
∵f(x+y)=x+y,x+y=f(x)+f(y),∴f(x+y)=f(x)+f(y),自变量的和等于因变量的和.
正比例函数y=kx就有这个特点.故①-丁;②寻找一类函数g(x),使得g(x+y)=g(x)g(y),即自变量相加等于因变量乘积.指数函数y=ax(a>0,a≠1)具有这种性质:g(x)=ax,g(y)=ay,g(x+y)=ax+y=ax•ay=g(x)•g(y).故②-甲;③自变量的乘积等于因变量的和:与②相反,可知对数函数具有这种性质:
令:h(x)=logax,则h(xy)=loga(xy)=logax+logbx.故③-乙.④t(x)=x2,这个函数可使t(xy)=t(x)t(y)成立.∵t(x)=x2,∴t(xy)=(xy)2=x2y2=t(x)t(y),故④-丙.故选D.
考点:1.对数函数、指数函数的图像与性质;2.一次函数的性质与图象.
科目:高中数学 来源: 题型:单选题
函数的定义域为,若存在非零实数,使得对于任意有且,则称为上的度低调函数.已知定义域为的函数,且为上的度低调函数,那么实数的取值范围是( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com