精英家教网 > 高中数学 > 题目详情
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利.比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局,则再赛2局结束这次比赛的概率为
 
考点:相互独立事件的概率乘法公式
专题:计算题,概率与统计
分析:“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案.
解答: 解:记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局甲获胜”为事件Bi(j=3,4,5).
设“再赛2局结束这次比赛”为事件A,则A=A3•A4+B3•B4
由于各局比赛结果相互独立,故P(A)=P(A3•A4+B3•B4)=P(A3•A4)+P(B3•B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.
故答案为:0.52.
点评:本小题考查相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,再进行计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C1的参数方程为
x=2-3sinα
y=3cosα-2
,(其中α为参数,α∈R),在极坐标系(以坐标原点0为极点,以x轴非负半轴为极轴)中,曲线C2的极坐标方程为ρcos(θ-
π
4
)=a.
(Ⅰ)把曲线C1和C2的方程化为直角坐标方程;
(Ⅱ)若曲线C1上恰有三个点到曲线C2的距离为
3
2
,求曲线C2的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=a+bi(a,b∈R,a>0),满足|z|=
10
,且复数(1-2i)z在复平面上对应的点在第二、四象限的角平分线上.
(Ⅰ)求复数z;
(Ⅱ)若
.
z
+
m+i
1-i
(m∈R)为纯虚数,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),圆M的直角坐标方程为(x-a)2+(y-b)2=1,且圆M上的点到直线l的最小距离为1.
(1)求a-b的值;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆N的极坐标方程为ρ=2cosθ,当a=1,b=1时,求圆M和圆N公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,已知向量
a
=(-1,2),点A(8,0),B(ksinθ,t),(0≤θ≤
π
2
,t∈R)
(1)若
AB
a
,且|
OA
|=|
AB
|,求向量
OB

(2)若向量
AB
与向量
a
共线,当k>4,且tsinθ取得最大值为4时,求
OA
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一点,Q为圆C:(x+2)2+(y-2)2=1上一点,点P到直线l:x=-1的距离为d,则|PQ|+d的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

学校进行体质抽测,计划在高中三个年级中共抽取160人,已知高一、高二、高三学生数比例为6:5:5,则应在高一分配
 
个名额.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“若p则q”的逆命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

长为10cm的线段AB上有一点C,则C与A、B的距离均大于2cm的概率为
 

查看答案和解析>>

同步练习册答案