4£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOy£¬ÇúÏßCµÄ·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Õ\\ y=-\sqrt{3}+2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬PµãµÄ¼«×ø±êΪ£¨2$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ4¦Ñcos¦È+3¦Ñsin¦È+1=0£®
£¨1£©Ð´³öµãPµÄÖ±½Ç×ø±ê¼°ÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÈôQΪÇúÏßCÉϵ͝µã£¬ÇóPQÖеãMµ½Ö±Ïßl¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉ$x=2\sqrt{3}cos\frac{¦Ð}{6}$=3£¬y=2$\sqrt{3}sin\frac{¦Ð}{6}$=$\sqrt{3}$£¬ÄÜÇó³öµãPµÄÖ±½Ç×ø±ê£¬ÓÉ$\left\{\begin{array}{l}x=2cos¦Õ\\ y=-\sqrt{3}+2sin¦Õ\end{array}\right.$£¬ÏûÈ¥¦Õ£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©Çó³öÖ±ÏßlµÄÆÕͨ·½³ÌΪ4x+3y+1=0£¬Éè$Q£¨2cos¦Õ£¬-\sqrt{3}+2sin¦Õ£©$£¬Ôò$M£¨\frac{3}{2}+cos¦Õ£¬sin¦Õ£©$£¬ÀûÓõ㵽ֱÏßlµÄ¾àÀ빫ʽÄÜÇó³öµãMµ½Ö±ÏßlµÄ×îС¾àÀ룮

½â´ð ½â£º£¨1£©¡ßPµãµÄ¼«×ø±êΪ£¨2$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£¬
$x=2\sqrt{3}cos\frac{¦Ð}{6}$=3£¬y=2$\sqrt{3}sin\frac{¦Ð}{6}$=$\sqrt{3}$£¬
¡àµãPµÄÖ±½Ç×ø±êΪ$£¨3£¬\sqrt{3}£©$£¬
ÓÉ$\left\{\begin{array}{l}x=2cos¦Õ\\ y=-\sqrt{3}+2sin¦Õ\end{array}\right.$£¬ÏûÈ¥¦ÕµÃ£¬${x^2}+{£¨y+\sqrt{3}£©^2}=4$£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ${x^2}+{£¨y+\sqrt{3}£©^2}=4$£®¡­£¨5·Ö£©
£¨2£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Õ\\ y=-\sqrt{3}+2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬
¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ4¦Ñcos¦È+3¦Ñsin¦È+1=0£¬
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪ4x+3y+1=0£¬
Éè$Q£¨2cos¦Õ£¬-\sqrt{3}+2sin¦Õ£©$£¬Ôò$M£¨\frac{3}{2}+cos¦Õ£¬sin¦Õ£©$£¬
¡àµãMµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{|4cos¦Õ+3sin¦Õ+7|}{5}=\frac{|5sin£¨¦Õ+¦Á£©+7|}{5}¡Ý\frac{2}{5}$£¬
¡àµãMµ½Ö±ÏßlµÄ×îС¾àÀëΪ$\frac{2}{5}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éµãµÄÖ±½Ç×ø±ê¼°ÇúÏߵįÕͨ·½³ÌµÄÇóʾ£¬¿¼²éÏß¶ÎÂäÖе㵽ֱÏß¾àÀëµÄ×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÖеã×ø±ê¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¶¨ÒåÔÚRÉϵĺ¯Êýy=f£¨x£©Âú×ãf£¨4+x£©=f£¨-x£©£¬£¨x-2£©f¡ä£¨x£©£¾0£¬Ôò¡°f£¨x£©£¾f£¨1£©¡±ÊÇ¡°x£¼1¡±µÄ£¨¡¡¡¡£©Ìõ¼þ£®
A£®³ä·Ö²»±ØÒªB£®±ØÒª²»³ä·Ö
C£®³äÒªD£®¼È²»³ä·ÖÓÖ²»±ØÒª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÎª×ø±êÔ­µã£¬f£¨x£©=$\overrightarrow{OA}$•$\overrightarrow{OC}$-£¨2m+$\frac{2}{3}$£©•|$\overrightarrow{AB}$|£»A¡¢B¡¢CÈýµãÂú×ãÂú×ã$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$£®
£¨¢ñ£©ÇóÖ¤£ºA¡¢B¡¢CÈýµã¹²Ïߣ»
£¨¢ò£©ÒÑÖªA£¨1£¬cosx£©£¬B£¨1+cosx£¬cosx£©£¨0¡Üx¡Ü$\frac{¦Ð}{2}$ £©£¬µÄ×îСֵΪ-$\frac{3}{2}$£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýy=sin£¨$\frac{1}{2}$x+$\frac{¦Ð}{6}$£©µÄͼÏóµÄ¶Ô³ÆÖá·½³ÌÊÇx=2k¦Ð+$\frac{2¦Ð}{3}$£¬k¡ÊZ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô¼¯ºÏM={1£¬2£¬3£¬4}£¬¼¯ºÏN={2£¬4}ÔòM¡ÉN=£¨¡¡¡¡£©
A£®B£®{1£¬3£¬5}C£®{2£¬4}D£®{1£¬2£¬3£¬4£¬5}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ax-1}{{{x^2}+2}}$£¨x¡ÊR£©£¬µ±x=2ʱf£¨x£©È¡µÃ¼«Öµ£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨3£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©-2m+1=0ÔÚx¡Ê[-2£¬1]ʱÓн⣬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¹ýµã£¨0£¬-2£©µÄÖ±Ïß½»Å×ÎïÏßy2=16xÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬ÇÒy12-y22=1£¬Ôò¡÷OAB£¨OÎª×ø±êÔ­µã£©µÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{4}$C£®$\frac{1}{8}$D£®$\frac{1}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑ֪ijËã·¨µÄÁ÷³ÌͼÈçͼËùʾ£¬ÔòÊä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªp£º¹ØÓÚxµÄ²»µÈʽx2+2ax-a¡Ü0Óн⣬q£ºa£¾0»òa£¼-1£¬ÔòpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£®£¨¿Õ¸ñ´¦ÇëÌîд¡°³ä·Ö²»±ØÒª¡±¡°±ØÒª²»³ä·Ö¡±¡°³äÒª¡±»ò¡°¼È²»³ä·ÖÒ²²»±ØÒª¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸