精英家教网 > 高中数学 > 题目详情
(2013•海淀区二模)已知函数f(x)=lnx,g(x)=-
x
a
(a>0)
(Ⅰ)当a=1时,若曲线y=f(x)在点M(x0,f(x0))处的切线与曲线y=g(x)在点P (x0,g(x0))处的切线平行,求实数x0的值;
(Ⅱ)若?x∈(0,e],都有f(x)≥g(x) 
3
2
,求实数a的取值范围.
分析:(I)把a=1导入解析式,并求出f′(x)和g′(x),根据切线平行对应的斜率相等列出方程,求出x0的值;
(II)根据条件设F(x)=f(x)-g(x)-
3
2
,再把条件进行转化,求出对应的解析式和导数,求出临界点,并根据导数与函数单调性的关系列出表格,再对a进行分类讨论,分别判断出函数的单调性,再求出对应的最小值,列出不等式求出a的范围.
解答:解:(I)把a=1代入得,g(x)=-
1
x

f′(x)=
1
x
g′(x)=
1
x2

∵f(x)在点M (x0,f(x0))处的切线与g(x)在点P (x0,g(x0))处的切线平行,
1
x0
=
1
x02
,解得x0=1,
所以x0=1,
(II)由题意设F(x)=f(x)-g(x)-
3
2
=lnx+
a
x
-
3
2

∵?x∈(0,e],都有f(x)≥g(x)+
3
2

∴只要F(x)在(0,e]上的最小值大于等于0即可,
F′(x)=
1
x
-
a
x2
=
x-a
x2
,由F′(x)=0得,x=a,
F(x)、F′(x)随x的变化情况如下表:
x (0,a) a (a,+∞)
F′(x) - 0 +
F(x) 递减 极大值 递增
当a≥e时,函数F′(x)在(0,e)上单调递减,F(e)为最小值,
∴F(e)=1+
a
e
-
3
2
≥0
,得a≥
e
2
,∴a≥e
当a<e时,函数F(x)在(0,a)上单调递减,在(a,e)上单调递增,
则F(a)为最小值,所以F(a)=lna+
a
a
-
3
2
≥0
,得a≥
e

e
≤a<e
                                      
综上,a≥
e
点评:本题考查了导数的几何意义,导数与函数单调性的关系,以及恒成立问题的转化,分类讨论思想,考查了分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知函数f(x)=ex,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).
(Ⅰ)当a=0时,求函数S(t)的单调区间;
(Ⅱ)当a>2时,若?t0∈[0,2],使得S(t0)≥e,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知椭圆M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,  -
1
2
)
,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

同步练习册答案