精英家教网 > 高中数学 > 题目详情
已知
①求当时, 的解析式;
②作出函数的图象,并指出其单调区间。
(1)当时,
(2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

对于定义在区间D上的函数f(X),若存在闭区间和常数c,使得对任意x1,都有,且对任意x2D,当时,恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②函数为R上的“平顶型”函数;
③函数f(x)=sinx-|sinx|为R上的“平顶型”函数;
④当时,函数,是区间上的“平顶型”函数.
其中正确的是________.(填上你认为正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数对任意实数满足:,且,则下列结论正确的是_____________.
是周期函数;    ②是奇函数;
关于点对称;④关于直线对称.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,若至少存在一个时,成立,则实数的取值范围为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将函数的图像先向右平移个单位,再向下平移两个单位,得到函数的图像.
(1)化简的表达式,并求出函数的表示式;
(2)指出函数上的单调性和最大值;
(3)已知,问在的图像上是否存在一点,使得AP⊥BP

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x) >0的x的取值范围是
A.(-l,0)B.(-1,0)∪(1,+∞)
C.(1,+∞)D.(-∞,-1)∪(1,-∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义域为R,又,当时,
值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某房建公司在市中心用100万元购买一块土地,计划建造一幢每层为1000平方米的n
层楼房,第一层每平方米所需建筑费用(不包括购买土地费用)为600元,第二层每平
方米所需建筑费用为700元,…,以后每升高一层,每平方米的建筑费用增加100元.
(1)写出每平方米平均造价y(以百元为单位)用n表示的表达式;
(2)为使整个大楼每平方米的平均造价不超过1150元,则这幢大楼最多能造几层?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案